1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.…
海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如…
1. Bloom-Filter算法简介 Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在于集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合.而在能容忍低错误率的应用场合下,Bloom Fi…
转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的算法,一直在听这个名词,但一直没有正儿八经的去了解,今天看到了一篇关于Bloom Filter 的讲解,真是有种沁人心脾的感觉.转过来加深自己的了解. 在开始转载之前,为了加深读者的印象,先介绍一下在BloomFilter里面含有的重要角色 先在脑中留下印象,然后在来消化转载的内容 Bloom Fi…
Bloom Filter 是由伯顿.布隆(Burton Bloom)在1970年提出的一种多hash函数映射的快速查找算法.它实际上是一个很长的二进制向量和一些列随机映射函数.应用在数据量很大的情况下. 算法 初始化一个m比特的值全为0的向量.选择k个不同的散列函数,散列函数的产生的值域范围是0~m-1. 1)元素加入过滤器    对于元素e1,通过k个散列函数分别产生了值为 h1 ,h2, ..., hk :    将二进制向量的第 h1 ,h2, ..., hk 位分别置为1:     2)…
Bloom Filter(布隆过滤器) 布隆过滤器用于测试某一元素是否存在于给定的集合中,是一种空间利用率很高的随机数据结构(probabilistic data structure),存在一定的误识别率(false positive),即布隆过滤器报告某一元素存在于某集合中,但是实际上该元素并不在集合中,但是没有错误识别的情形(false negative),即如果某个元素确实没有在该集合中,那么布隆过滤器是不会报告该元素存在于集合中的,没有漏报的情形出现,召回率为百分之百.   算法描述  …
引子 <数学之美>介绍布隆过滤器非常经典: 在日常生活中,包括设计计算机软件时,经常要判断一个元素是否在一个集合中.比如: 在字处理软件中,需要检查一个英语单词是否拼写正确(也就是要判断它是否在已知的字典中): 在FBI,一个嫌疑人的名字是否已经在嫌疑犯的名单上: 在网络爬虫里,一个网站是否已访问过: yahoo, gmail等邮箱垃圾邮件过滤功能,等等 ... 以上场景需要解决的共同问题是:如何查看一件事物是否在有大量数据的集合里. 通常的做法有以下几种思路: 数组. 链表. 树.平衡二叉树…
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字.所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了.…
前言 :  即可能误判    不会漏判   一.什么是Bloom Filter     Bloom Filter是一种空间效率很高的随机数据结构,它的原理是,当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit array)中的K个点,把它们置为1.检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检索元素一定不在:如果都是1,则被检索元素很可能在.这就是布隆过滤器的基本思想.       但Bloom Filter的这种…
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1)的时间复杂度来查询元素,但付出了空间的代价.在这个大数据问题中,就算哈希表有100%的空间利用率,也至少需要50亿*64Byte的空间,4G肯定是远远不够的. 当然我们可能想到使用位图,每个URL取整数哈希值,置于位图相应的位置上.4G大概有320亿个bit,看上去是可行的.但位图适合对海量的.取值…