NowCoder号称自己已经记住了1-100000之间所有的斐波那契数.为了考验他,我们随便出一个数n,让他说出第n个斐波那契数.当然,斐波那契数会很大.因此,如果第n个斐波那契数不到6位,则说出该数:否则只说出最后6位. 输入描述: 输入有多组数据.每组数据一行,包含一个整数n (1≤n≤100000). 输出描述: 对应每一组输入,输出第n个斐波那契数的最后6位. 输入例子: 1234100000 输出例子: 1235537501 import java.util.Scanner; publ…
程序设计: 斐波那契数列(Fibonacci sequence),从1,1开始,后面的每一项等于前面两项之和. 图方便就递归实现,图性能就用循环. # for 循环 target = int(input()) res = 0 a,b =1,1 for i in range(target-1): a, b=b, a+b print(a) #a,b=b,a+b是先计算等号右边,右边计算完成再依次赋值给左边. # 递归实现: def Fib(n): return 1 if n<=2 else Fib(…
刚开始学Python的时候,记得经常遇到打印斐波那契数列了,今天玩玩使用四种办法打印出斐波那契数列 方法一:使用普通函数 def feibo(n): """ 打印斐波那契数列 :param n: 输入要打出多少项 """ count = 0 # 定义一个计数器 num1, num2 = 0, 1 # 定义前2项 0,1 while count < n: print(num1, end=" ") num1, num2 =…
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, 就是因为用了递归, 递归时大量的出入栈操作必然比循环时间来得久 这题估摸着是每个测试样例就一个数, 记忆化的优势显示不出来, 但还是要认真看题 严格要求自己 记忆化搜索 vector<int> dp; int climbStairs(int n) { if (dp.size() <= 2)…
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http-equiv="content-type" content="text/html" /> <meta name="keywords" content="不用临时变量进行两个值的变换" /> <meta na…
PS:今天上午,非常郁闷,有很多简单基础的问题搞得我有些迷茫,哎,代码几天不写就忘.目前又不当COO,还是得用心记代码哦! 定义: 斐波那契数列指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 这个数列从第三项开始,每一项都等于前两项之和. 以输出斐波那契数列的前20项为例: 方法一: 比拟标准的做法,是借助第三个变量实现的. #include<iostream>   using namespace std; int mai…
今天偶然看到这个题目,闲着没事练一下手 if __name__ == '__main__': """ 斐波那契数列(Fibonacci sequence), 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……. """ def get_fibs(n): """ 获取长度为n的裴波那契数列 :param n:length of list [int] :return:generato…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例如 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........这个数列从第3项开始,每一项都等于前两项之和,而且当n趋向于无穷大时,前一项与后一项的…
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to decorate the show-window of his shop with textile stripes of white, blue and red colors. He wants to satisfy the following conditions: Stri…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列".  指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.-- 题目:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面.已知一对兔子每个月可以生一对小兔子,而一对…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…
--利用sqlserver来运算斐波那契规律 --利用事物与存储过程 declare @number intdeclare @A intdeclare @B intdeclare @C int set @A=1 set @B=2 set @Number=3 select @C=@A+@B while(@Number<60) begin    set @C=@A+@B  if(@@ERROR<>0)  goto errorhandler  print N'第'+convert(varcha…
Description KI十分喜欢美丽而优雅的斐波那契数列,最近他新认识了一种斐波那契字符串,定义如下 f (0) = b, f (1) = a, f (2) = f (1) + f (0) = ab, f (3) = f (2) + f (1) = aba, f (4) = f (3) + f (2) = abaab, ...... KI想知道 f (n) 中的第 m 位是什么,你可以帮他解决这个问题吗? Input 第一行有一个整数 T ,表示测试组数. 接下来的每个测试组包含两个数 n,…
看到公司的笔试题中有一道题让写斐波那契数列,自己忙里偷闲写了一下 什么是斐波那契数列:斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368这个数列从第二项开始,每一项都等于前两项之和. 特别指出:第0项是0,第1项是第一个1. 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)…
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐波那契数的和. 一.归纳法证明斐波那契数列是必败点 为了方便,我们将n记为f[i]. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,f[i] = f[k]+f[k-1]. 则我们可以把这一堆石子看成两堆,简称k堆和k-1堆. (一定可以看成…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨.他被人称作“比萨的列昂纳多”.1202年,他撰写了<算盘全书>(Liber Abacci)一书.他是第一个研究了…
根据CC150的解决方式和Introduction to Java programming总结: 使用了两种方式,递归和迭代 CC150提供的代码比较简洁,不过某些细节需要分析. 现在直接运行代码,输入n(其中用number代替,以免和方法中的n混淆)的值,可以得出斐波那契数. 代码如下: /* CC150 8.1 Write a method to generate the nth Fibonacci number Author : Mengyang Rao note : Use two me…
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵快速幂,输出等了几秒钟才输出完,肯定会超时.因为所有计算都是要取模的,设F[i]=f[i] mod n.F[0]=F[1]=1.只要出现F[i]=F[i+1]=1,那么整个序列就会重复.例如n=3,则序列为1,1,2,0,2,2,1,0,1,1……第九项和第十项都等于1,所以之后的序列都会重复. 至…
时间限制:5000ms单点时限:1000ms内存限制:256MB描述 大家对斐波那契数列想必都很熟悉: $a_0 = 1, a_1 = 1, a_i = a_{i-1} + a_{i-2}, (i > 1)$. 现在考虑如下生成的斐波那契数列: $a_0 = 1, a_i = a_j + a_k, i > 0, j, k$从$[0, i-1]$的整数中随机选出($j$和$k$独立). 现在给定$n$,要求求出$E(a_n)$,即各种可能的$a$数列中$a_n$的期望值.输入 一行一个整数$n$…
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念. 如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数: 清单 1. 简单输出斐波那契數列前 N 个数 def…
描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1开始,之后的斐波那契数就由之前的两数相加.首几个斐波那契数是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,……………… 特别指出:0不是第一项,而是第…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9630   Accepted: 6839 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence…