目录 1 问题描述 2 解决方案   1 问题描述 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now…
Tarjan算法 概念区分 有向图 强连通:在有向图\(G\)中,如果两个顶点\(u, v\ (u \neq v)\)间有一条从\(u\)到\(v\)的有向路径,同时还有一条从\(v\)到\(u\)的有向路径,则称\(u, v\)强连通 强连通图:如果有向图\(G\)的任意两个不同的顶点都强连通,则称\(G\)是一个强连通图 强连通分量:有向图\(G\)的极大强连通子图称为图\(G\)的强连通分量 无向图 连通:和强连通类似(只是无向图的任意边都是双向的,如果存在\(u\rightarrow v…
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的一个割点集合 割边集合:一个无向连通图G 若删除它的一个边集 G中有点之间不再连通则称这个边集是它的一个割边集合 图的点联通度:无向连通图的最小割点集合中元素的个数是一张无向连通图的点连通度 图的边联通度:无向连通图的最小割边集合中元素的个数是一张无向连通图的边联通度 割点:如果一个无向连通图的点连…
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 求取割点: 1>当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了. 2>当前节点U不是树根的时候,条件是“low[v]>=dfn[u]”,也就是在u之后遍历的点…
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 二:tarjan算法在求桥和割点中的应用 1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了.) 2)当前节点U不是树根的时候,条件是“low[v]>=…
Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using namespace std; ; + ; struct EDGE{ int v, nxt; }Edge[maxm]; int Head[maxn], cnt; int DFN[maxn], LOW[maxn], color[maxn], INDEX, id; bool vis[maxn]; int N, M;…
http://www.cnblogs.com/wenruo/p/4989425.html 强连通 强连通是指一个有向图中任意两点v1.v2间存在v1到v2的路径及v2到v1的路径. dfs遍历一个图,会生成一颗树.每个节点按最先遍历的时间给定一个编号,用一个数组dfn表示,又叫时间戳. 然后有几个概念. 画图举例: 假设一个边是u-->v 树边:dfs遍历后生成树的边叫做树边.dfn[u] = -1 如图中<1,2> <2,3> <3,4> <2,5>…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1269 以下内容为原创,转载请声明. 强连通分量SCC(Strongly Connected Component):一个图的子图,如果任何两个点都互相可达且满足最大性,该子图就是原图的SCC. 对于有向图的连通性,tarjan可以说是十分牛逼了,由于tarjan只需要一次dfs就能判断有向图中所有的SCC,所以他的复杂度是O(|V|+|E|),也就是把每条边和每个点都会检索一遍,是在线性时间能处理出所…
tarjan的过程就是dfs过程. 图一般能画成树,树的边有三种类型,树枝边 + 横叉边(两点没有父子关系) + 后向边(两点之间有父子关系): 可以看到只有后向边能构成环,即只有第三张图是强连通分量. 对图dfs一下,遍历所有未遍历过的点 ,会得到一个有向树,显然有向树是没有环的.(注意搜过的点不会再搜) 则能产生环的只有指向已经遍历过的点的边,遍历到的点3指向了之前遍历过的点1形成了环. 比如图2的遍历情况: 首先访问3,然后访问1,没有后向边,然后从栈中删除1,继而访问2(入栈),发现2-…
/** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求最长链,连接首尾即可;剩下的连通块即为所求答案; 算法思路: 对图深度优先搜索,定义DFN(u)为u在搜索树中被遍历到的次序号; 定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFN序号最小的节点; 则有: Low(u)=Min { DFN(u), Low(v),(u,v)为树…