文件切分算法 文件切分算法主要用于确定InputSplit的个数以及每个InputSplit对应的数据段. FileInputFormat以文件为单位切分成InputSplit.对于每个文件,由以下三个属性值确定其对应的InputSplit的个数. goalSize:根据用户期望的InputSplit数据计算,即totalSize/numSplit.totalSize为文件总大小:numSplit为用户设定的Map Task个数,默认情况下是1. minSize:InputSplit的最小值,由…
参考 FileInputFormat类中split切分算法和host选择算法介绍  以及 Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)  以及 Hadoop中FileInputFormat计算InputSplit的getSplits方法的流程  以及 hadoop作业分片处理以及任务本地性分析(源码分析第一篇) 分析前先介绍一下: ( 这里要注意下, Block 的 hosts 和 Split 的 hosts…
近期開始使用MapReduce,发现网上大部分样例都是对文本数据进行处理的,也就是说在读取输入数据时直接使用默认的TextInputFormat进行处理就可以.对于文本数据处理,这个类还是能满足一部分应用场景.可是假设要处理以二进制形式结构化记录存储的文件时,这些类就不再适合了. 本文以一个简单的应用场景为例:对依照二进制格式存储的整数做频数统计.当然,也能够在此基础上实现排序之类的其它应用.实现该应用的主要难点就是怎样处理输入数据.參考<权威指南·第三版>得知须要继承FileInputFor…
摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop MapReduce 中的侧连接>,作者:Donglian Lin. 在这篇博客中,将使用 MapReduce 示例向您解释如何在 Hadoop MapReduce 中执行缩减侧连接.在这里,我假设您已经熟悉 MapReduce 框架并知道如何编写基本的 MapReduce 程序.本博客中讨论的主题如下…
MapTask类 在MapTask类中找到run函数 if(useNewApi){       runNewMapper(job, splitMetaInfo, umbilical, reporter);     } 再找到runNewMapper @SuppressWarnings("unchecked")   private<INKEY,INVALUE,OUTKEY,OUTVALUE>   void runNewMapper(final JobConf job,    …
Job类  /**    * Define the comparator that controls which keys are grouped together    * for a single call to    * {@link Reducer#reduce(Object, Iterable,    *                       org.apache.hadoop.mapreduce.Reducer.Context)}    * @param cls the raw…
MRJobConfig      public static fina COMBINE_CLASS_ATTR      属性COMBINE_CLASS_ATTR = "mapreduce.job.combine.class"      ————子接口(F4) JobContent            方法getCombinerClass              ————子实现类 JobContextImpl                  实现getCombinerClass方法…
Compression and Input Splits   当我们使用压缩数据作为MapReduce的输入时,需要确认数据的压缩格式是否支持切片?   假设HDFS中有一个未经压缩的大小为1GB的文本文件,如果HDFS Block大小为128MB,那么这个文件会被HDFS存储为8个Block.当MapReduce Job使用这个文件作为输入时将会创建8个切片(默认每一个Block生成一个切片),每一个切片关联的数据都可以被一个Map Task独立地处理.   如果这个文本文件使用Gzip格式压…
FileOutputFormat类继承OutputFormat,需要提供所有基于文件的OutputFormat实现的公共功能,主要有以下两点: (1)实现checkOutputSpecs方法 checkOutputSpecs方法一般在作业被提交到JobTracker之前,由JobClient自动调用,以检查输出目录是否存在,如果目录存在则抛出异常,以防止之前的数据被覆盖. (2)处理side-effect file 任务的side-effect file并不是任务的最终输出文件,而是具有特殊用途…
地址 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme,ML 等. MapReduce 框架的核心步骤主要分两部分:Map 和Reduce.当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件…