概述 这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot). 它使用了循环神经网络(seq2seq 模型)来进行句子预测.它是用 python 和 TensorFlow 开发. 程序的加载主体部分是参考 Torch的 neuralconvo from macournoyer. 现在, DeepQA 支持一下对话语料: Cornell Movie Dialogs corpus (default). Alread…
本文参考文献: Gehring J, Auli M, Grangier D, et al. Convolutional Sequence to Sequence Learning[J]. arXiv preprint arXiv:1705.03122, 2017. 被引次数:13 Dauphin Y N, Fan A, Auli M, et al. Language modeling with gated convolutional networks[J]. arXiv preprint a…
转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention) 原文链接:https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 神经机器翻译模型(基于注意力机制的Seq2…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/242 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
本文近期学习NMT相关知识,学习大佬资料,汇总便于后期复习用,有问题,欢迎斧正. 目录 RNN Seq2Seq Attention Seq2Seq + Attention Transformer Transformer-xl 1. RNN 根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合.如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景.one to many 结构,给一个输入得到一系列输出,…
本文转载自:https://zhuanlan.zhihu.com/p/29212896 简单的Char RNN生成文本 Sherlock I want to create some new things! 32 人赞了该文章 我来钱庙复知世依,似我心苦难归久,相须莱共游来愁报远.近王只内蓉者征衣同处,规廷去岂无知草木飘. 你可能以为上面的诗句是某个大诗人所作,事实上上面所有的内容都是循环神经网络写的,是不是感觉很神奇呢?其实这里面的原理非常简单,只需要对循环神经网络有个清楚的理解,那么就能够实现…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/252 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
前言 最近整理了很多前端面试题的东西,今天又去参加了一次面试,不知各位烦不烦,我反正有点累了,于是我们今天继续回到我们前段时间研究的问题,我们再来看看MVC吧. 什么是MVC 又回到这个问题了,到底什么是MVC呢? MVC是一种设计模式,他将应用划分为: ① 数据(模型,model) ② 展现层(视图,view) ③ 用户交互(控制器,control) 一个事件发生的过程是这样的: ① 用户和应用产生交互 ② 控制器的事件处理器被触发 ③ 控制器从模型中请求数据,并将其交给视图 ④ 数据将数据呈…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…