seq2seq聊天模型(一)】的更多相关文章

原创文章,转载请注明出处 最近完成了sqe2seq聊天模型,磕磕碰碰的遇到不少问题,最终总算是做出来了,并符合自己的预期结果. 本文目的 利用流程图,从理论方面,回顾,总结seq2seq模型, seq2seq概念 你给模型一段输入,它返回一段输出! 可以用在这些情景,聊天模型.翻译.看图说话.主旨提取等等涉及自然语言的层面,用途较广泛 例如: 输入"今天中午吃什么", 输出"吃兰州拉面". seq2seq是通过encoder编译器将一段输入,编译,汇聚成一个状态.再…
注意力seq2seq模型 大部分的seq2seq模型,对所有的输入,一视同仁,同等处理. 但实际上,输出是由输入的各个重点部分产生的. 比如: (举例使用,实际比重不是这样) 对于输出"晚上", 各个输入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 对于输出"吃", 各个输入所占比重: 今天-0%,晚上-0%,吃-100%,什么-0% 特别是在seq2seq的看图说话应用情景中 睡觉还握着笔的baby 这里的重点就是baby,笔!通过这些重点,生…
使用典型seq2seq模型,得到的结果欠佳,怎么解决 结果欠佳原因在这里 在训练阶段的decoder,是将目标样本["吃","兰州","拉面"]作为输入下一个预测分词的输入. 而在预测阶段的decoder,是将上一个预测结果,作为下一个预测值的输入.(注意查看预测多的箭头) 这个差异导致了问题的产生,训练和预测的情景不同. 在预测的时候,如果上一个词语预测错误,还后面全部都会跟着错误,蝴蝶效应. 解决办法-Scheduled Sampling 修…
以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- """ Translation with a Sequence to Sequence Network and Attention ************************************************************* **Author**: `Sean…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
概述 这个工作尝试重现这个论文的结果 A Neural Conversational Model (aka the Google chatbot). 它使用了循环神经网络(seq2seq 模型)来进行句子预测.它是用 python 和 TensorFlow 开发. 程序的加载主体部分是参考 Torch的 neuralconvo from macournoyer. 现在, DeepQA 支持一下对话语料: Cornell Movie Dialogs corpus (default). Alread…
Sequence-to-sequence (seq2seq) 模型. 突破了传统的固定大小输入问题框架 开创了将DNN运用于翻译.聊天(问答)这类序列型任务的先河 并且在各主流语言之间的相互翻译,和语音助手中人机短问快答的应用中有非常好的表现. 该模型可用于: 自然语言翻译 聊天机器人,自动问答机器人 微博自动回复 文本分类 生成文档摘要 本文参考了:https://blog.csdn.net/gzmfxy/article/details/78691048…
一.数据模型的设计 这里我们先不讨论群聊的模型,指讨论两个人之间的聊天,我们可以把两个人实时聊天抽象为(点对点)的实时通讯,如下图 我们上面的所说的模型其实也就是数据包的模型应该怎么设计,换句话说就是数据包的数据结构的设计,其实很简单,A发送给B,已经B发送给A,我们在传输的时候,全部带上他们的唯一标识,也就是userid,如下图所示 如上图所示我们很容易就会发现,这两个数据包虽然带了各自的userid但是还是不够准确,因为我们只是带了自己的userid,所以我们不知道发给谁,那么很简单,我们再…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qysh123/article/details/91245246Seq2Seq是目前主流的深度学习翻译模型,在自然语言翻译,甚至跨模态知识映射方面都有不错的效果.在软件工程方面,近年来也得到了广泛的应用,例如: Jiang, Siyuan, Ameer Armaly, and Collin McMillan. "Automatically…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
自然语言处理,语音处理.文本处理.语音识别(speech recognition),让计算机能够"听懂"人类语音,语音的文字信息"提取". 日本富国生命保险公司花170万美元安装人工智能系统,客户语言转换文本,分析词正面或负面.智能客服是人工能智能公司研究重点.循环神经网络(recurrent neural network,RNN)模型. 模型选择.每一个矩形是一个向量,箭头表示函数.最下面一行输入向量,最上面一行输出向量,中间一行RNN状态.一对一,没用RNN,如…
MVC 是一种设计模式, 它将应用划分为 3 个部分 : 数据( 模型). 展现层( 视图) 和用 户交互层( 控制器). 换句话说, 一个事件的发生是这样的过程 : 1. 用户和应用产生交互. 2. 控制器的事件处理器被触发. 3. 控制器从模型中请求数据, 并将其交给视图. 4. 视图将数据呈现给用户. 现在来看一个真实的例子, 图 1-1 展示了在 Holla 中如何发送新的聊天消息. 从Holla中发送一个新的聊天消息 1. 用户提交一个新的聊天消息. 2. 控制器的事件处理器被触发.…
一.基于web端的实时通讯,我们都知道有websocket,为了快速开发,本项目我们采用socket.io(客户端使用socket.io-client) Socket.io是一个WebSocket库,包括了客户端的js和服务器端的nodejs,它的目标是构建可以在不同浏览器和移动设备上使用的实时应用.它会自动根据浏览器从WebSocket.AJAX长轮询.Iframe流等等各种方式中选择最佳的方式来实现网络实时应用,非常方便和人性化,而且支持的浏览器最低达IE5.5 socket.io特点: 实…
seq2seq模型详解 原创 2017年12月25日 09:41:04 标签: seq2seq / 自然语言 / 机器人   在李纪为博士的毕业论文中提到,基于生成的闲聊机器人中,seq2seq是一种很常见的技术.例如,在法语-英语翻译中,预测的当前英语单词不仅取决于所有前面的已翻译的英语单词,还取决于原始的法语输入;另一个例子,对话中当前的response不仅取决于以往的response,还取决于消息的输入.其实,seq2seq最早被用于机器翻译,后来成功扩展到多种自然语言生成任务,如文本摘要…
本文参考文献: Gehring J, Auli M, Grangier D, et al. Convolutional Sequence to Sequence Learning[J]. arXiv preprint arXiv:1705.03122, 2017. 被引次数:13   Dauphin Y N, Fan A, Auli M, et al. Language modeling with gated convolutional networks[J]. arXiv preprint a…
转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models With Attention) 原文链接:https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 神经机器翻译模型(基于注意力机制的Seq2…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/242 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
Seq2Seq(Attention) @ 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1…
Seq2Seq(Attention) 目录 Seq2Seq(Attention) 1.理论 1.1 机器翻译 1.1.1 模型输出结果处理 1.1.2 BLEU得分 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Seq2Seq(Attention)模型结构 1.2.2.1 Encoder 1.2.2.2 Decoder 1.2.2.2.1 原始解码器 1.2.2.2.2 带有注意力机制的解码器 1.3 特殊字符 2.实验 2.1 实验步骤 2.2 算法模型 2.2.1 En…
本文近期学习NMT相关知识,学习大佬资料,汇总便于后期复习用,有问题,欢迎斧正. 目录 RNN Seq2Seq Attention Seq2Seq + Attention Transformer Transformer-xl 1. RNN 根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合.如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景.one to many 结构,给一个输入得到一系列输出,…
本文转载自:https://zhuanlan.zhihu.com/p/29212896 简单的Char RNN生成文本 Sherlock I want to create some new things! 32 人赞了该文章 我来钱庙复知世依,似我心苦难归久,相须莱共游来愁报远.近王只内蓉者征衣同处,规廷去岂无知草木飘. 你可能以为上面的诗句是某个大诗人所作,事实上上面所有的内容都是循环神经网络写的,是不是感觉很神奇呢?其实这里面的原理非常简单,只需要对循环神经网络有个清楚的理解,那么就能够实现…
不错的 Tutorial: 从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记 分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整    理 | Leo 出    品 | 人工智能头条(公众号ID:AI_Thinker) 刚刚过去的五四青年节,你的朋友圈是否被这样的民国风照片刷屏?用户只需要在 H5 页面上提交自己的头像照片,就可以自动生成诸如此类风格的人脸比对照片,简洁操作的背后离不开计算机视觉技术和腾讯云技术的支持. 那么这个爆款应用的背后用到了哪些计…
NLP任务 前处理任务 前处理任务的结果可作为下游任务输入的额外特征. POSTa(词性标注) 往模型中输入句子,对每一个token进行词性的识别. 识别出的词性可以用于下游任务. Word Segmentation(分词) 对于英文,显然句子有天然的分词.所以分词通常是针对中文句子. 分词之后,模型的输入就可以以词汇作单位,而不再以字作单位. 以下面例子做说明: 将一个句子按字输入模型,训练模型来对每个字来进行二分类决定每个字的对应位置输出N或者Y(N/Y是词的边界标识) Parsing(语义…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/252 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
前言 最近整理了很多前端面试题的东西,今天又去参加了一次面试,不知各位烦不烦,我反正有点累了,于是我们今天继续回到我们前段时间研究的问题,我们再来看看MVC吧. 什么是MVC 又回到这个问题了,到底什么是MVC呢? MVC是一种设计模式,他将应用划分为: ① 数据(模型,model) ② 展现层(视图,view) ③ 用户交互(控制器,control) 一个事件发生的过程是这样的: ① 用户和应用产生交互 ② 控制器的事件处理器被触发 ③ 控制器从模型中请求数据,并将其交给视图 ④ 数据将数据呈…
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做个总结,种种事情一直拖到现在,今天抽空赶紧将最后一篇补上.前面几篇博文中我们已经阐述了不论分词.词性标注亦或NER,都可以抽象成一种序列标注模型,seq2seq,就是将一个序列映射到另一个序列,这在NLP领域是非常常见的,因为NLP中语序.上下文是非常重要的,那么判断当前字或词是什么,我们必须回头看…
项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 PyTorch 其他项目 自然语言处理和语音处理 该部分项目涉及语音识别.多说话人语音处理.机器翻译.共指消解.情感分类.词嵌入/表征.语音生成.文本语音转换.视觉问答等任务,其中有一些是具体论文的 PyTorch 复现,此外还包括一些任务更广泛的库.工具集.框架. 这些项目有很多是官方的实现,其中…
翻译模型也是用了装桶(bucketing)和填充(padding),这两种方法是用于高效地处理不同长度句子的情况.我们首先来弄清楚是怎么一回事.当我们从英语翻译成法语的时候,假设我们的输入英语的长度为L1,输出法语的长度为L2.因为英语句子是作为encoder_inputs而传入的,法语句子作为decoder_inputs而传入(最开始加了一个GO前缀),原则上对于每一个长度为(L1,L2+1)的语句对,都要创建一个seq2seq的模型.这将导致一个巨大的计算图,而这个图由许多十分相似的子图构成…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
paper:https://dl.acm.org/citation.cfm?id=3219988 data & code:http://dm.nankai.edu.cn/code/STNE.rar STNE:自翻译网络嵌入 该工作认为在节点属性与结构信息再本质上是有一定联系的,提出 STNE 模型,利用 seq2seq 模型进行特征提取,将利用节点信息及网络结构识别节点的过程比喻为翻译的过程 1. 简介 目的:学习网络中节点的低维表示 将利用节点信息及网络结构识别节点的过程比喻为翻译的过程  …