利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列. 时间序列的类型 根据时间间隔的不同,时间序列可以是按年度(Annual).季度.月度.周.小时.分钟.秒等频率采集的序列. 时间序列的成分 趋势(Trend),比如长期上涨或长期下跌. 季节性(Seas…
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称. ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前做预测的模型. ARIMA整合了自回归项AR和滑动平均项MA. ARIMA可以建模任何存在一定规律的非季节性时间序列. 如果时间序列具有季节性,则需要使用SARIMA(Seasonal ARIMA)建模,后续会…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
问题:航班乘客预测 数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000 下载地址 目标:预测国际航班未来 1 个月的乘客数 import numpy import matplotlib.pyplot as plt from pandas import read_csv import math from keras.models import Sequential from keras.layers import Dense from ke…
匿名函数,顾名思义即没有名称的函数,和def定义的函数的最大区别在于匿名函数创建后返回函数本身(即匿名函数不需要return来返回值),表达式本身结果就是返回值,而def创建后则赋值给一个变量名,在Python中,我们利用关键词lambda创建匿名函数,以下是匿名函数lambda表达式的形式: lambda arg1,arg2,.....argn:expression 以下为一些lambda的特点: lambda 是一个表达式,而不是一个语句,即我们可以在任何可以使用表达式的场景一样使用lamb…
  (Granger Causality) 格兰杰(Granger)于 1969 年提出了一种基于“预测”的因果关系(格兰杰因果关系),后经西蒙斯(1972 ,1980)的发展,格兰杰因果检验作为一种计量方法已经被经济学家们普遍接受并广泛使用,尽管在哲学层面上人们对格兰杰因果关系是否是一种“真正”的因果关系还存在很大的争议. 简单来说它通过比较“已知上一时刻所有信息,这一时刻X的概率分布情况”和“已知上一时刻除Y以外的所有信息,这一时刻X的概率分布情况”,来判断Y对X是否存在因果关系.(在发展和…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
2017年7月9日上午6点10分,先师胡三清同志--新因果关系的提出者.植入式脑部电极癫痫治疗法的提出者.IEEE高级会员,因肺癌医治无效于杭州肿瘤医院去世,享年50岁.余蒙先师厚恩数载,一朝忽闻先师驾鹤西归,悲痛不已.瘁心之余,遂决意传先师之道,以慰先师在天之灵.如此,先师盖以瞑目矣! 格兰杰因果关系作为一种可以衡量时间序列之间相互影响关系的方法,最近十几年备受青睐.无论是经济学[1],气象科学[2],神经科学[3]都有广泛的应用,尽管后两者(气象和神经科学)连格兰杰自己都反对(格兰杰反对将格…
http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的是JoinQuant,里面有篇干货贴分享给大家,希望对各位有帮助.       =========================== 量化交易策略 ===========================   价值投资 成长股内在价值投资:http://www.joinquant.com/post/…
机器学习可以被用于时间序列预测. 在机器学习能使用之前,时间序列预测需要被重新转化成有监督学习.将一个序列组合成成对的输入输出序列. 在这篇教程中,你会发现如何通过使用机器学习算法将单变量和多变量的时间预测序列转化成有监督学习. 在看完这篇教程之后,你会知道: 1.如何写一个将时间序列的数据集转化成有监督学习的数据集的函数. 2.如何将机器学习用于一个单变量的时间序列. 3.如何将机器学习用于一个多变量的时间序列. 开始吧~ 时间序列vs有监督学习 开始之前,我们先来看看时间序列和有监督学习的数…