问题描述: BST树,又称二叉查找树,求其到所有叶子节点路径的最小值 测试用例一:  10 5 20 返回15: 测试用例二: 100 20 70 110 120 10 null null 89 null null null null 返回130: 程序代码实现: package examination.written; /** * * @author ZhuXY * @time 2016-6-12 下午9:57:53 * */ public class BSTMinLength { publi…
考试的时候想复杂了,其实直接一边写放进set里去重就可以了 很有意思 自己的理解就是cpp的map+set或者就是set可以完成大多数java的hashset操作 链接:https://ac.nowcoder.com/acm/problem/221493 来源:牛客网 题目描述 小红有一个字符串,她每次操作可以改变一个字符的值. 对于'a'.'b'.'c'.--.'y'等小写字母,小红每次操作可以把该字母变成比它大一位的字母,即变成'b'.'c'.'d'.--.'z'. 对于'A'.'B'.'C…
http://www.cnblogs.com/bizhu/archive/2012/08/19/2646328.html 4. 二叉查找树(BST) Technorati 标记: 二叉查找树,BST,二叉查找树合并 4.1 BST数据结构定义 使用C++语言,如果需要使用BST,那么不用重新造轮子了,C++语言里的map, set等STL容器应该可以满足需求了(虽然STL里这些容器大多是以红黑树作为其底层实现),如果你需要使用小/大根堆(也叫优先队列,特殊的.自平衡的BST),STL也能满足你的…
BST树,B树.B-树.B+树.B*树 二叉搜索树(BST): 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: 二叉查找树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果二叉查找树的所有非叶子结点的左…
一.二叉树介绍 二叉查找树(Binary Search Tree,BST),又称二叉排序树,也称二叉搜索树,它或者是一颗空树,或者具有如下性质的树:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值:若它的右子树不为空,则右子树上所有节点的值都大于根节点的值.它的左右子树也分别为二叉查找树. 结论:中序遍历一颗二叉查找树可以得到一个按关键字递增的有序序列.简单来说,比根小的往左边放  比根大的往右边放. 二.代码实现 1.BST结点类: public class BSTNode<K, V…
一. 二叉树 1. 什么是二叉树? 在计算机科学中,二叉树是每个结点最多有两个子树的树结构. 通常子树被称作“左子树”(left subtree)和“右子树”(right subtree). 二叉树常被用于实现二叉查找树和二叉堆. 2. 二叉树是一个递归的定义 (1)根结点为空则定义该二叉树为空 (2)一个根结点,可以导出一棵完整的二叉树,而它的左孩子或者右孩子,同样可以是代表一棵完整二叉树的根结点,不论它是否为空.即左子树和右子树同样为二叉树. 3. 二叉堆 (1)二叉堆一般由数组实现,分为大…
二叉查找树BST 就是二叉搜索树 二叉排序树. 就是满足 左儿子<父节点<右儿子 的一颗树,插入和查询复杂度最好情况都是logN的,写起来很简单.   根据BST的性质可以很好的解决这些东西 1.查询值 int Search(int k,int x) { if(x<a[k].key && a[k].l) Search(a[k].l,x); else if(x>a[k].key && a[k].r) Search(a[k].r,x); else ret…
二叉查找树(BST):使用中序遍历可以得到一个有序的序列…
1. BST树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字. 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的…
BST树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入 右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么…