引言:通过高斯模型得到最小二乘法(线性回归),即:      通过伯努利模型得到逻辑回归,即:      这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在机器学习中,有很多模型都是基于广义线性模型的,比如传统的线性回归模型,最大熵模型,Logistic回归,softmax回归,等等.今天主要来学习如何来针对某类型的分布建立相应的广义线性模型. 广义线性模型 广义线性模型:广义线性模型是基于指数分布族(Exponential Family),而指数分布…
广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性回归,我们会假设目标变量Y服从正态分布,而逻辑回归,则假设服从伯努利分布.在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例.那什么是指数分布族呢?若一个分布的概率密度或者概率分布可以写成这个形式,…
前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The Exponential Family) 如果一个分布可以用如下公式表达,那么这个分布就属于指数分布族: 公式中y是随机变量:h(x)称为基础度量值(base measure): η称为分布的自然参数(natural parameter),也称为标准参数(canonical parameter): T(…
最近一直在回顾linear regression model和logistic regression model,但对其中的一些问题都很疑惑不解,知道我看到广义线性模型即Generalized Linear Model后才恍然大悟原来这些模型是这样推导的,在这里与诸位分享一下,具体更多细节可以参考Andrew Ng的课程. 一.指数分布 广义线性模型都是由指数分布出发来推导的,所以在介绍GLM之前先讲讲什么是指数分布.指数分布的形式如下: η是参数,T(y)是y的充分统计量,即T(y)可以完全表…
1 问题来源 记得一开始学逻辑回归时候也不知道当时怎么想得,很自然就接受了逻辑回归的决策函数--sigmod函数: 与此同时,有些书上直接给出了该函数与将 $y$ 视为类后验概率估计 $p(y=1|x)$ 等价,即 并给出了二分类(标签 $yin(0,1)$)情况下的判别方式: 但今天再回过头看的时候,突然就不理解了,一个函数值是怎么和一个概率联系起来了呢?有些人解释说因为 $h_{theta}(x)$ 范围在0~1之间啊,可是数值在此之间还是没说明白和概率究竟有什么关系.所以,前几天看了一些资…
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
Logistic Regression 同 Liner Regression 均属于广义线性模型,Liner Regression 假设 $y|x ; \theta$ 服从 Gaussian 分布,而 Logistic Regression 假设 $y|x ; \theta$ 服从 Bernoulli 分布. 这里来看线性回归,给定数据集 $\left \{ (x_i,y_i) \right \}_{i=1}^N$ ,$x_i$ 与 $y_i$ 的关系可以写成 $y_i = \theta^Tx_…
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回归,符合伯努利分布 也发现他们有些相似的地方,其实这些方法都是一个更广泛的模型族的特例,这个模型族称为,广义线性模型(Generalized Linear Models,GLMs) The exponential family 为了介绍GLMs,先需要介绍指数族分布(exponential fami…