应该算高斯消元经典题了吧. 题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率 题解: 首先求一个\(mov[i]=\frac{1-p[i]}{deg[i]}\)表示结点i每次移动到某个相邻结点的概率,\(deg[i]\)表示结点\(i\)的度 为了方便,我们把每个点向自己连条边,下面写式子好些(注意度数不能增加) 然后考虑设计状态\(f(a,b)\)表示第一个人在\(a\),第二个人在…