webrtc 的回声抵消(aec.aecm)算法简介 原文链接:丢失.不好意思        webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT).考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如…
webrtc 的回声抵消(aec.aecm)算法简介        webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:1.回声时延估计 2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波) 4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT).考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特…
webRTC中回声消除(AEC)模块编译时aec_rdft.c文件报错. 原因是: 局部变量ip跟全局变量冲突的问题,可以将局部变量重新命名一下,就可以通过编译了. aec_rdft.c修改以后文件代码为: /* * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html * Copyright Takuya OOURA, 1996-2001 * * You may use, copy, modify and distribute this code fo…
webrtc 的回声抵消(aec.aecm)算法主要包括以下几个重要模块:回声时延估计:NLMS(归一化最小均方自适应算法):NLP(非线性滤波):CNG(舒适噪声产生).一般经典aec算法还应包括双端检测(DT). 考虑到webrtc使用的NLMS.NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方. 1) 回声时延估计回声延时长短对回声抵消器的性能有比较大的影响(此处不…
AES算法简介 一. AES的结构 1.总体结构 明文分组的长度为128位即16字节,密钥长度可以为16,24或者32字节(128,192,256位).根据密钥的长度,算法被称为AES-128,AES-192或者AE-256. 2.明文密钥组织方式 3.一些相关的的术语定义和表示 • 状态(State):密码运算的中间结果称为状态. • State的表示:状态用以字节为基本构成元素的矩阵阵列来表示,该阵列有4行,列数记为Nb. Nb=分组长度(bits)÷ 32.Nb可以取的值为4,对应的分组长…
一.   排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间重构,对每个采样点取其连续的m个样点,得到点x(i)的m维空间的重构向量: 则序列X的相空间矩阵为: 其中m和l分别为重构维数和延迟时间: 对x(i)的重构向量Xi各元素进行升序排列,得到: 这样得到的排列方式为 其为全排列m!中的一种,对X序列各种排列情况出现次数进行统计,计算各种排列情况出现的相…
阅读书籍:[美]Aditya Bhargava◎著 袁国忠◎译.人民邮电出版社.<算法图解> 第1章 算法简介 1.2 二分查找 一般而言,对于包含n个元素的列表,用二分查找最多需要\(log_2n\)步,而简单查找最多需要n步 仅当列表是有序的时候,二分查找才管用 python猜数字代码(二分查找) def binarySeach (list,item): low = 0 high = len(list) - 1 while low <= high: mid = (low + high…
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非常有意思,而大三那门回归分析只是学了一些皮毛而已.过两天有空,记一些ESL这本书里讲的各种变量选择方法在这里. 先讲一下今天看到的新方法,所谓的LARS(Least Angle Regression). LARS是大神Efron他们搞出来做变量选择的一套算法,有点像Forward Stepwise(…
机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应该使用哪种机器学习算法? 很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标. 不要使用最复杂的算法,除非其结果值得付出昂贵的开销和资源. 这里给出了一些最常见的算法,按使用简单程度排序. 1. 决策树(DT,Decision Trees) 在进行逐步应答过程中,典型的决策树分析会…
STL所有算法简介 STL中的所有算法(70个) 参考自:http://www.cppblog.com/mzty/archive/2007/03/14/19819.htmlhttp://hi.baidu.com/dinglinbin/blog/item/887e7c30c12e429ba9018e30.html STL算法部分主要由头文件<algorithm>,<numeric>,<functional>组成.要使用 STL中的算法函数必须包含头文件<algori…
有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank-introduction.html 另一篇<PageRank简介-串讲Q&A.docx> http://docs.babel.baidu.com/doc/ee14bd65-ba71-4ebb-945b-cf279717233b PageRank对网页排名的算法,曾是Google发家致富的…
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成 因此就学习了下Gradient Boosting算法,在这里分享下我的理解 Boosting 算法简介 Boosting算法,我理解的就是两个思想: 1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器: 2)“知错能改,善莫大焉”,不断地在错误中学习,迭代来降低…
前端必学---JavaScript数据结构与算法---简介 1. 数据结构: 数据结构是相互之间存在一种或者多种特定关系的数据元素的集合.---<大话数据结构> 1.1 数据结构的分类 1. 逻辑结构 线性结构 线性结构中的数据元素之间是一对一的关系. 集合结构 集合结构中的数据元素除了同属于一个集合外,它们之间没有其他关系. 树形结构 树形结构中的数据元素之间存在一对多的层次关系. 图形结构 图形结构的数据元素是多对多的关系. 2. 物理结构 顺序存储结构 链接存储结构 数据结构要学习总结的…
简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会很高,我们希望能使用一种无监督算法帮我们做这件事,异常检测算法可以在一定程度上解决这个问题. 异常检测分为 离群点检测(outlier detection) 以及 奇异值检测(novelty detection) 两种. 离群点检测:适用于训练数据中包含异常值的情况,例如上述所提及的情况.离群点检测…
一.前言 因为工作的关系,笔者从2004年开始接触回声消除(Echo Cancellation)技术,而后一直在某大型通讯企业从事与回声消除技术相关的工作,对回声消除这个看似神秘.高端和难以理解的技术领域可谓知之甚详. 要了解回声消除技术的来龙去脉,不得不提及作为现代通讯技术的理论基础——数字信号处理理论.首先,数字信号处理理论里面有一门重要的分支,叫做自适应信号处理.而在经典的教材里面,回声消除问题从来都是作为一个经典的自适应信号处理案例来讨论的.既然回声消除在教科书上都作为一种经典的具体的应…
单独编译和使用webrtc音频降噪模块(附完整源码+测试音频文件) 单独编译和使用webrtc音频增益模块(附完整源码+测试音频文件) 说实话很不想写这篇文章,因为这和我一贯推崇的最好全部编译并使用webrtc音频处理模块相悖.可是不知不觉已经把降噪和增益写出来,回声消除如果用户可以得到完美利用也不失为一个很好的方法.但是还是那句话,最好还是全部编译和使用webrtc的整个音频处理模块.另外这篇文章已经不单单的回声消除模块了,其中包括了降噪,增益,静音检测,如果有需要可以选择其中的一部分单独提取…
众所周知,WebRTC非常适合点对点(即一对一)的音视频会话.然而,当我们的客户要求超越一对一,即一对多.多对一设置多对多的解决方案或者服务,那么问题就来了:“我们应该采用什么样的架构?” .简单的呢有人会考虑copy多个p2p就完成了多人之间的会话,可并没有考虑到到来的问题:cpu.内存.尤其是流量问题:传统的解决方案是MCU服务器,利用服务器硬件的能力去mix音视频,然后传给各个参与者,这能到达预想的,这个亦能到达我们的需求:使用基于网状拓扑结构的结构可能是前两者的折中之选. 尽管能实现We…
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编码,种群初始化,交叉变异算子,经营保留机制等基本操作.与传统的基于微积分的方法和穷举方法等优化算法(具体介绍见博客[Math] 常见的几种最优化方法中的其他数学优化方法)相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织.自适应.自学习的特性,能够不受问题性质的限制,有效地…
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用. 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用.很多哈希算法都能够满足…
声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要可以分为以下两类:相关度排序模型和重要性排序模型. 1.1 相关度排序模型(Relevance Ranking Model) 相关度排序模型根据查询和文档之间的相似度来对文档进行排序.常用的模型包括:布尔模型(Boolean Model),向量空间模型(Vector Space Model),隐语义…
信息素的局部更新策略   每只蚂蚁在构造出一条从起点到终点的路径后,蚁群算法还要求根据路径的总长度来更新这条路径所包含的每条边上信息素的浓度(在旅行商问题中每座城市是图中的一个节点,城市两两间有一条边相连).下面给出了蚁群算法更新信息素的公式:…
群算法是Marco Dorigo在1992年提出的一种优化算法,该算法受到蚂蚁搜索食物时对路径的选择策略的启示.蚁群算法作为群体智能算法的一种利用分布式的种群搜索策略来寻找目标函数的最优解.蚁群算法与其他优化算法相比较的一个明显优势是蚁群算法能够适应动态变化的环境,这个特点使它特别适合解决像网络路由这类解空间频繁发生变化的优化问题. 为了更好的理解蚁群算法,我们首先需要了解在自然界中蚂蚁是如何寻找食物的.蚂蚁在寻找食物时会遵循一些简单的基本法则.这些法则的核心是利用一种叫作信息素的物质,信息素是…
蚁群算法主要可以分为以下几个步骤:首先,蚁群中的每只蚂蚁都根据地面上信息素浓度的大小找出一条从原点通向终点的遍历所有城市一次的路径(构造路径):然后每只蚂蚁沿着自己刚刚找到的路径回溯,在路径经过的各个component(在旅行商问题中component指的是连接两座城市的那条边)上根据找到路径的整体质量(在旅行商问题中,质量好坏可以用路径总长度的大小来评价)分泌出相应浓度的信息素(更新信息素):当所有蚂蚁都找到了遍历所有城市的路径并通过回溯完成了信息素的更新工作后,所有component上的信息…
PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的…
一.简介: 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance) 2.单调性(Monotonicity) 3.分散性(Spread) 4.负载(Load) 普通的哈希算法(也称硬哈希)采用简单取模的方式,将机器进行散列,这在cache环境不变的情况下能取得让人满意的结果,但是当cache环境动态变化时,这种静态取模的方式显然就不满足单调性的要求(当增加或减少一台机子时,几乎所有的存储内容都要被重新散列到别的缓冲区中). 一致性哈希算法的…
转自:http://blog.chinaunix.net/uid-27105712-id-5612512.html 一.使用背景 先说一下需要用到向量时钟的场景.我们在写数据时候,经常希望数据不要存储在单点.如db1,db2都可以同时提供写服务,并且都存有全量数据.而client不管是写哪一个db都不用担心数据写乱问题.但是现实场景中往往会碰到并行同时修改.导致db1和db2数据不一致.于是乎就有人想出一些解决策略.向量时钟算是其中一种.简单易懂.但是并没有彻底解决冲突问题,现实分布式存储补充了…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 排序算法(Sorting Algorithm)是计算机算法的一个组成部分. 排序的目标是将一组数据 (即一个序列) 重新排列,排列后的数据符合从大到小 (或者从小到大) 的次序.这是古老但依然富有挑战的问题.Donald Knuth的经典之作<计算机程序设计艺术>(The Art of Computer Programming)的第三卷就专门用于讨论排序和查找.从无序到有序,有…
一.AdaBoost的损失函数 AdaBoost优化的是指数损失,即\begin{align*} \mathbb{E}_{\boldsymbol{x} \sim \mathfrak{D}, y}[e^{-y H(\boldsymbol{x})}] = \int_{\boldsymbol{x}} \sum_y e^{-y H(\boldsymbol{x})} p(y|\boldsymbol{x}) p(\boldsymbol{x}) \mbox{d} \boldsymbol{x} \end{ali…
MD5(单向散列算法)的全称是Message-Digest Algorithm 5(信息-摘要算法),经MD2.MD3和MD4发展而来.MD5算法的使用不需要支付任何版权费用. MD5功能 l 输入任意长度的信息,经过处理,输出为128位的信息(数字指纹): l 不同的输入得到的不同的结果(唯一性): l 根据128位的输出结果不可能反推出输入的信息(不可逆): MD5用途 1.防止被篡改: 1)比如发送一个电子文档,发送前,我先得到MD5的输出结果a.然后在对方收到电子文档后,对方也得到一个M…
移动机器人智能的一个重要标志就是自主导航,而实现机器人自主导航有个基本要求--避障.避障是指移动机器人根据采集的障碍物的状态信息,在行走过程中通过传感器感知到妨碍其通行的静态和动态物体时,按照一定的方法进行有效地避障,最后达到目标点.实现避障与导航的必要条件是环境感知,在未知或者是部分未知的环境下避障需要通过传感器获取周围环境信息,包括障碍物的尺寸.形状和位置等信息,因此传感器技术在移动机器人避障中起着十分重要的作用.避障使用的传感器主要有超声传感器.视觉传感器.红外传感器.激光传感器等. 目前…