kaggle-泰坦尼克号Titanic-2】的更多相关文章

概述 1912年4月15日,泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但有一些人比其他人更有可能生存,比如妇女,儿童和上层阶级.在本文中将对哪些人可能生存作出分析,特别是运用Python和机器学习的相关模型工具来预测哪些乘客幸免于难,最后提交结果.从kaggle泰坦尼克生存预测项目下载相关数据. 实施步骤 1.提出问题 什么样的人在泰坦尼克号中更容易存活? 2.理解数据…
学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. 1,看到样本是,查看样本的分布和统计情况 #查看数据的统计信息print(data_train.info())#查看数据关于数值的统计信息print(data_train.describe()) 通常遇到缺值的情况,我们会有几种常见的处理方式 如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作…
前言 这是学习视频中留下来的一个作业,我决定根据大佬的步骤来一步一步完成整个项目,项目的下载地址如下:https://www.kaggle.com/c/titanic/data 大佬的传送门:https://zhuanlan.zhihu.com/p/338974416 查看数据 首先我们打开训练集,看到的数据如下 我们可以看到这个数据集里面的特征类别有,乘客序号,是否存活,船票等级,性别,年龄,在船上的亲属数量,票的号码,票价,座舱号,和登船地 所以我们需要判定哪些数据是有效的 读取数据 imp…
前言 这个是Kaggle比赛中泰坦尼克号生存率的分析.强烈建议在做这个比赛的时候,再看一遍电源<泰坦尼克号>,可能会给你一些启发,比如妇女儿童先上船等.所以是否获救其实并非随机,而是基于一些背景有先后顺序的. 1,背景介绍 1912年4月15日,载着1316号乘客和891名船员的豪华巨轮泰坦尼克号在首次航行期间撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难.沉船导致大量伤亡的原因之一是没有足够的救生艇给乘客和船员.虽然幸存下来有一些运气因素,但有一些人比其他人更有可能生存,比如妇女…
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titanic_test.csv和titanic_train.csv两数据表.首先是表的一些字段说明: PassengerId -- A numerical id assigned to each passenger. Survived -- Whether the passenger survived (1…
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接触并了解了一些数据挖掘比赛的基本流程,现记录一下. 1. 分析数据 因为数据量比较小,train有800多条数据,test有400多条数据,因此这里用了execl的数据透视表分析. 同时python提供pandas库,可以很好的分析数据. 2. 缺失值填充 关于Age,Fare,Embarked三个…
背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再次打开这个页面,看到清清楚楚的Titanic Tutorial - Kaggle,完全傻瓜式的照着做就能做下来.当年是什么蒙蔽了我的眼睛~ Target use machine learning to create a model that predicts which passengers sur…
 下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模型不准确或者特征提取不够,对于特征提取不够问题,可以根据模型的反馈来看其和数据的相关性,如果相关系数是0,则放弃特征,如果过低,说明特征需要再次提炼! 4.用集成学习,bagging等通常可以获得更高的准确度! 5.缺失数据可以使用决策树回归进行预测! 转自:http://blog.csdn.net…
Titanic是kaggle上一个练手的比赛,kaggle平台提供一部分人的特征,以及是否遇难,目的是预测另一部分人是否遇难.目前抽工作之余,断断续续弄了点,成绩为0.79426.在这个比赛过程中,接触并了解了一些数据挖掘比赛的基本流程,现记录一下. 1. 分析数据 因为数据量比较小,train有800多条数据,test有400多条数据,因此这里用了execl的数据透视表分析. 同时python提供pandas库,可以很好的分析数据. 2. 缺失值填充 关于Age,Fare,Embarked三个…
原创文章,同步首发自作者个人博客 .转载请务必在文章开头显眼处注明出处 摘要 本文详述了如何通过数据预览,探索式数据分析,缺失数据填补,删除关联特征以及派生新特征等方法,在Kaggle的Titanic幸存预测这一分类问题竞赛中获得前2%排名的具体方法. 竞赛内容介绍 Titanic幸存预测是Kaggle上参赛人数最多的竞赛之一.它要求参赛选手通过训练数据集分析出什么类型的人更可能幸存,并预测出测试数据集中的所有乘客是否生还. 该项目是一个二元分类问题 如何取得排名前2%的成绩 加载数据 在加载数…