前言: ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的形式,更进而不能表示函数的实际意义. 而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义.可以跳过函数形式直接进行语义级别的解析. 可视化是直观理解的一个重要方式,CNN可视化可以辅助对特定数据集绕过语法,直接进行特定网络语义级别的解析.在CNN可视化之后,你可以看到整个特征提取的表象和结果. 这就是一个有趣的地方,我们难以规约卷积核有怎样的函数形式,有怎么样的语法…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…
前言: 随着超量类别PR和高精度的需求,人工特征方法局限性凸显出来,固定的特征hash压缩映射因其压缩损失.表现为特定的特征hash方法,在海量的同类数据集上近邻特性变差,而在不同类别的数据上面隔离性又出现问题. 既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程.越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法--CNN方法.IPPR又从框架分治法回到一站式框架方法. 从20…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
前言:CNN迎接多类的挑战 特定类型的传统PR方法特征提取的方法是固定的,模式函数的形式是固定的,在理论上产生了特定的"局限性" 的,分类准确度可以使用PAC学习理论的方法计算出来.特定函数形式的模式识别准确度.泛化误差都受到模型本身VC维的限制. 使用不受限制的多层网络取代可以有明确语法形式的传统网络,可以突破特征提取和模式函数的固有限制,也导致了模式识别的黑盒方法--不停的实验,使用更多的数据直至接近遍历,提高训练测试技巧,直到评测结果达到最优.随着类别的增加,和更高准确率的要求,…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
导言: 在CV很多方向所谓改进模型,改进网络,都是在按照人的主观思想在改进,常常在说CNN的本质是提取特征,但并不知道它提取了什么特征,哪些区域对于识别真正起作用,也不知道网络是根据什么得出了分类结果. 如在上次解读的一篇论文<Feature Pyramid Transformer>(简称FPT)中,作者提出背景信息对于识别目标有重要作用,因为电脑肯定是在桌上,而不是水里,大街上,背景中的键盘鼠标的存在也能辅助区分电脑与电视机,因此作者提出要使用特征金字塔融合背景信息.从人的主观判断来看,这点…
CNN可视化技术总结(一)-特征图可视化 CNN可视化技术总结(二)--卷积核可视化 导言: 前面我们介绍了两种可视化方法,特征图可视化和卷积核可视化,这两种方法在论文中都比较常见,这两种更多的是用于分析模型在某一层学习到的东西.在理解这两种可视化方法,很容易理解图像是如何经过神经网络后得到识别分类. 然而,上次我在知乎看到一个通过yolov3做跌倒检测,希望加上人脸识别进行多任务学习从而提高准确率的提问.这明显提问者并不理解神经网络是如何对这种带有时间维度的视频进行分析从而实现行为识别,从本质…
CNN可视化技术总结(一)-特征图可视化 CNN可视化技术总结(二)--卷积核可视化 CNN可视化技术总结(三)--类可视化 导言: 前面介绍了可视化的三种方法--特征图可视化,卷积核可视化,类可视化,这三种方法在很多提出新模型或新方法的论文中很常见,其主要作用是提高模型或者新方法的可信度,或者用来增加工作量,或者用来凑字数,还有一些作用是帮助理解模型针对某个具体任务是如何学习,学到了哪些信息,哪些区域对于识别有影响等. 本文将介绍一些可视化的项目,主要有CNN解释器,特征图.卷积核.类可视化的…