MTF(Modulation Transfer Function,模量传递函数),是目前分析镜头解像能力的方法,可以用来评判镜头还原物体对比度的能力.说到MTF,不得不先提一下衡量镜头性能的两在重要指标--分辨率和反差. 一.分辨率: 分辨率(Resolution)又称分辨力.鉴别率.鉴别力.分析力.解像力和分辨本领,是指摄影镜头清晰地再现被摄景物纤微能力.显然分辨率越高的镜头,所拍摄的影像越清晰细腻.它的单位是"线对.毫米".它的可以量化,用数据表示,使直观.更科学.更严密. 二.反…
错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1}{m} \sum_{i=1}^{m} I(f(x_{i})\neq y_{i})\] 但是错误率有一个严重的缺点: 错误率会掩盖样本如何被错误分类事实,这样对于有的问题很难进行下一步的分析 混淆矩阵 confusion matrix 真正例: True Positive 真反例: True Nega…
MTF(Modulation Transfer Function)是衡量镜头性能的一个重要指标.将镜头把被摄体所具有的对比度再现到像面上的忠诚度以空间频率特性进行表示,便绘成了MTF曲线图. 曲线图的横轴表示像高(与成像中心的距离mm),纵轴表示对比度值(最大值为1). MTF曲线图实际上有两种,一种是将光的波动性(衍射效应)考虑在内的“波动光学MTF”,还有一种则是不考虑光的衍射效应的“几何光学MTF”. 光具有波动特性,体现在光有非完全直线传播的时候,如干涉.衍射等.由于衍射现象,F值越大(…
1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正正例的比例. 召回率(Recall),他等于 TP/(TP+FN),给出的是预测为正例的真实正例占所有真实正例的比例. 2.ROC曲线 图中的横轴是伪正例的比例(假阳率=FP/(FP+TN)),而纵轴是真正例的比例(真阳率=TP/(TP+FN)).ROC曲线给出的是当阈值变化时假阳率和真阳率的变化情…
在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     那么,AUC是什么呢? AUC是一个机器学习性能度量指标,只能用于二分类模型的评价.(拓展二分类模型的其他评价指标:logloss.accuracy.precision)   对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive).假正例(false…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
Web 前端页面性能监控指标 性能监控 / 性能指标 / 性能优化 白屏时间计算 FCP 白屏时间:从浏览器输入地址并回车后到页面开始有内容的时间: 首屏时间计算 FMP 首屏时间:从浏览器输入地址并回车后到首屏内容渲染完毕的时间: 不需要交互 ? TTI Navigation Timing API Navigation Timing Level 2, W3C Working Draft 21 January 2020 https://www.w3.org/TR/navigation-timin…
原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 2.ROC曲线绘制 纵坐标为TPR TPR(True Positive Rate)真正确率,即模型正确识别正例的比例,TPR=TP/(TP+FN) 横坐标为FPR FPR(False Positive Rate)假正确率,即模型错误将反例识别为正例的比例,FPR=FP/(FP+TN) ROC曲线的…
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
分类: 4.软件设计/架构/测试 2010-01-12 19:58 34241人阅读 评论(4) 收藏 举报 测试loadrunnerlinux服务器firebugthread 上篇讲如何用LoadRunner监控Linux的性能指标 ,但是关于CPU的几个指标没有搞清楚,下面就详细说说. CPU Utilization 好理解,就是CPU的利用率,75%以上就比较高了(也有说法是80%或者更高).除了这个指标外,还要结合Load Average和Context Switch Rate来看,有可…