通过该案例,给出一个比较完整的.复杂的数据处理案例,同时给出案例的详细解析. 人力资源系统的管理内容组织结构图 1) 人力资源系统的数据库与表的构建. 2) 人力资源系统的数据的加载. 3) 人力资源系统的数据的查询. 职工基本信息 职工姓名,职工id,职工性别,职工年龄,入职年份,职位,所在部门id Michael,1,male,37,2001,developer,2Andy,2,female,33,2003,manager,1Justin,3,female,23,2013,recruitin…
Spark SQL是为了让开发人员摆脱自己编写RDD等原生Spark代码而产生的,开发人员只需要写一句SQL语句或者调用API,就能生成(翻译成)对应的SparkJob代码并去执行,开发变得更简洁 注意:本文全部基于SparkSQL1.6 参考:http://spark.apache.org/docs/1.6.0/ 一. API Spark SQL的API方案:3种 SQL the DataFrames API the Datasets API. 但会使用同一个执行引擎 the same exe…
package cn.my.sparksql import cn.my.sparkStream.LogLevel import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SQLContext /** * Created by lq on 2017/8/10. */ object SqlDemo { def main(args: Array[String]): Unit = { LogLevel.s…
前言 第1章   为什么Spark SQL? 第2章  Spark SQL运行架构 第3章 Spark SQL组件之解析 第4章 深入了解Spark SQL运行计划 第5章  测试环境之搭建 第6章 Spark SQL之基础应用 第7章 ThriftServer和CLI 第8章 Spark SQL之综合应用 第9章 Spark SQL之调优 第10章 总结 Spark SQL中的两个重要概念Tree和Rule.然后介绍一下Spark SQL的两个分支sqlContext和hiveContext…
前言 第1章   为什么Spark SQL? 第2章  Spark SQL运行架构 第3章 Spark SQL组件之解析 第4章 深入了解Spark SQL运行计划 第5章  测试环境之搭建 第6章 Spark SQL之基础应用 第7章 ThriftServer和CLI 第8章 Spark SQL之综合应用 第9章 Spark SQL之调优 第10章 总结 Spark SQL中的两个重要概念Tree和Rule.然后介绍一下Spark SQL的两个分支sqlContext和hiveContext…
简要介绍了SparkSQL与Hive on Spark的区别与联系 一.关于Spark 简介 在Hadoop的整个生态系统中,Spark和MapReduce在同一个层级,即主要解决分布式计算框架的问题. 架构 Spark的架构如下图所示,主要包含四大组件:Driver.Master.Worker和Executor. Spark特点 Spark可以部署在YARN上 Spark原生支持对HDFS文件系统的访问 使用Scala语言编写 部署模型 单机模型:主要用来开发测试.特点:Driver.Mast…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD等算子看到, 如何将DStream中的RDD使用Spark Core执行批处理操作.现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用. 案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品. 2.java案例 packag…
背景   这一篇可以说是“Hive JSON数据处理的一点探索”的兄弟篇.   平台为了加速即席查询的分析效率,在我们的Hadoop集群上安装部署了Spark Server,并且与我们的Hive数据仓库共享元数据.也就是说,我们的用户即可以通过HiveServer2使用Hive SQL执行MapReduce分析数据,也可以使用SparkServer使用Spark SQL(Hive SQL)执行Spark Application分析数据.   两者除去MapReduce和Spark Applica…