加入带洞卷积的resnet结构的构建,以及普通resnet如何通过模块的组合来堆砌深层卷积网络. 第一段代码为deeplab v3+(pytorch版本)中的基本模型改进版resnet的构建过程, 第二段代码为model的全部结构图示,以文字的方式表示,forward过程并未显示其中 import math import torch.nn as nn import torch.utils.model_zoo as model_zoo from modeling.sync_batchnorm.ba…
Java生鲜电商平台-电商中海量搜索ElasticSearch架构设计实战与源码解析 生鲜电商搜索引擎的特点 众所周知,标准的搜索引擎主要分成三个大的部分,第一步是爬虫系统,第二步是数据分析,第三步才是检索结果.首先,电商的搜索引擎并没有爬虫系统,因为所有的数据都是结构化的,一般都是微软的数据库或者 Oracle 的数据库,所以不用像百度一样用「爬虫」去不断去别的网站找内容,当然,电商其实也有自己的「爬虫」系统,一般都是抓取友商的价格,再对自己进行调整. 第二点,就是电商搜索引擎的过滤功能其实比…
1.HashMap源码解析(JDK8) 基础原理: 对比上一篇<Java中的容器(集合)之ArrayList源码解析>而言,本篇只解析HashMap常用的核心方法的源码. HashMap是一个以键值对存储的容器. hashMap底层实现为数组+链表+红黑树(链表超过8时转为红黑树,JDK7为数组+链表). HashMap会根据key的hashCode得到对应的hash值,再去数组中找寻对应的数组位置(下标). hash方法如下: static final int hash(Object key…
摘要:mapreduce中执行reduce(KEYIN key, Iterable<VALUEIN> values, Context context),调用一次reduce方法,迭代value集合时,发现key的值也是在不断变化的,这是因为key的地址在内部会随着value的迭代而不断变化. 序:我们知道reduce方法每执行一次,里面我们会通过for循环迭代value的迭代器.如果key是bean的时候,for循环里面value值变化的同时我们的bean值也是会跟随着变化,调用reduce方…
最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指正. 什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示. 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值.从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小.而初始位置的切线的斜率a > 0(也即该位置对应的导数大于0),w = w – a 就能够让 w 的值减小,循环求导更新w直到 J(w) 取得最小值.如果…
1.ArrayList源码解析 源码解析: 如下源码来自JDK8(如需查看ArrayList扩容源码解析请跳转至<Java中的容器(集合)>第十条):. package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; import sun.misc.SharedSecrets; //其中实现了R…
原生js中的函数有三种角色: 分两大种: 1.函数(最主要的角色)2.普通对象(辅助角色):函数也可以像对象一样设置属于本身的私有属性和方法,这些东西和实例或者私有变量没有关系两种角色直接没有必然的关系: 分三小类: 1.普通函数 function fn(){ console.log('我是一个最基础的函数'); } fn(); 2.类 包括(内置类,自定义类)也就是 构造函数 内置类是通过构造函数的形式创建的 自定义类形式和内置类一样创建 内置类的使用:其实上述fn函数就是内置Function…
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python) 原文地址:http://blog.csdn.net/u012234115/article/details/72830003 .embody{ padding:10px 10px 10px; margin:0 -20px; border-bottom:solid 1px #ededed; } .embody_b{ margin:0 ; padding:10px 0; } .embody .embody_t,.embo…
目录前言源码解析模型配置参数BertModelword embeddingembedding_postprocessorTransformerself_attention模型应用前言BERT的模型主要是基于Transformer架构(论文:Attention is all you need).它抛开了RNN等固有模式,直接用注意力机制处理Seq2Seq问题,体现了大道至简的思想.网上对此模型解析的资料有很多,但大都千篇一律.这里推荐知乎的一篇<Attention is all you need>…