转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .…
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key Words:有监督学习与无监督学习.分类.回归.密度预计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,Y). 有监督学习:最常见的是regression & classification. regression:Y是实数ve…
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习,分类.回归,密度估计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,…
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革命,貌似很NB.要好好学学. 0    第一人(提出者)     好像是由加拿大多伦多大学计算机系(Department of Computer Science ,University of Toronto) 的教授Geoffrey E. Hinton于2006年提出.    其个人网站是:    …
问答环节 问:在finetuning的时候,新问题的图像大小不同于pretraining的图像大小,只能缩放到同样的大小吗?" 答:对的:) 问:目前dl在时序序列分析中的进展如何?研究思路如何,能简单描述一下么答:这个有点长,可以看看google最近的一系列machine translation和image description的工作. 问:2个问题:1.目前Caffe主要面对CV或图像的任务,是否会考虑其它任务,比如NLP?2.如果想学习Caffe代码的话,能给一些建议吗?答:Caffe的…
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep Learning),又叫Unsupervised Feature Learning或者Feature Learning,是目前非常热的一个研究主题. 本文将主要介绍Deep Learning的基本思想和常用的方法. 一. 什么是Deep Learning? 实际生活中,人们为了解决一个问题,如对象…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
显卡不是你学习 Deep Learning 的借口 很多人在学习深度学习的时候会以自己没有 RTX N 卡的理由不动手实操,只满足于看看"娱乐"视频,听几节基础知识.当然,如果只是想要浅显地了解一下深度学习,或者是为了在茶余饭后多一些谈资的话,这种做法也是无可厚非的. 本着互联网的白嫖精神,我在学习 DL(Deep Learning) 的时候其实走了很多弯路,像大家熟知的 Colab.Kaggle.PaddlePaddle 等这种免费 GPU/TPU 都去蹭过,可结果是什么呢? 我花了…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
最近一直在开发Orchestra Pipeline System,歇两天翻译点文章换换气.这篇文章是无意间看到的,自己从2015年就开始关注机器学习在视效领域的应用了,也曾利用碎片时间做过一些算法移植的工作,所以看到这篇文章的时候很有共鸣,遂决定翻译一下. 原文链接:https://www.fxguide.com/fxfeatured/new-machine-learning-server-for-deep-learning-in-nuke/ 正文: Recent years have seen…
1 前言 Andrew Ng的UFLDL在2014年9月底更新了. 对于開始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial添加了Convolutional Neural Network的内容.了解的童鞋都知道CNN在Computer Vision的重大影响. 而且从新编排了内容及exercises. 新的UFLDL网址为: http://ufldl.stanford.edu/tutorial/ 2 Linear Regression…
========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
http://www.cnblogs.com/ysjxw/archive/2011/10/08/2201782.html Comments from Xinwei: 最近的一个课题发展到与深度学习有联系,因此在高老师的建议下,我仔细看了下深度学习的基本概念,这篇综述翻译自http://deeplearning.net,与大家分享,有翻译不妥之处,烦请各位指正. 查看最新论文 Yoshua Bengio, Learning Deep Architectures for AI, Foundation…
In the last chapter we learned that deep neural networks are often much harder to train than shallow neural networks. That's unfortunate, since we have good reason to believe that if we could train deep nets they'd be much more powerful than shallow…
--------------------- 作者:bestrivern 来源:CSDN 原文:https://blog.csdn.net/bestrivern/article/details/87008263 ========================================================== 一.迁移学习(Transfer learning)1.Task A and Task B has the same input x 2.You have a lot mor…
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
现状: 1. 目前大家对于大部分需求,通常采用multiple layer,units in each layer也是人工订好的(虽然可以做稀疏,但是在same layer范围内竞争). 2. 网络结构(或connection paradigm)常用的有3种: DNN(或DBN)中full connection,各个weight独立看待: CNN中part connection(translation or scale)in same convolution,weight有group的概念,同g…
写在前面的废话: 出了托福成绩啦,本人战战兢兢考了个97!成绩好的出乎意料!喜大普奔!撒花庆祝! 傻…………寒假还要怒学一个月刷100庆祝个毛线………… 正题: 题目是CNN,但是CNN的具体原理和之后会写一篇博客在deeplearning目录下详细说明. 简单地说,CNN与NN相比独特之处在于用部分连接代替全链接,并用pooling来对数据进行降维,这样做有几个好处: 对于大图像来说所需训练的参数大大减少 获取图像的部分特征而非全局特征 pooling使得网络的输出结果具有一定的平移和遮挡不变…
这个月阅读了论文[Partial Adversarial Domain Adaptation-eccv18],文章着眼于源域标签空间包含目标域标签空间的场景,在域对抗神经网络的基础上提出了部分对抗域适应方法.思想很容易理解,即在源域样本空间中引入了权值,希望源域和目标域共有的标签权值大一些,不共有的权值尽可能小. 这是我阅读的第一篇正式应用卷积神经网络的文章,其中对抗的思想用神经网络来实现.实验部分使用的是残差网络框架,包含卷积.池化.激活.全连接.反向传播等知识点,需要我去逐一理解.论文代码使…
内容简介 本书由Keras之父.现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉.自然语言处理.生成式模型等应用.书中包含30多个代码示例,步骤讲解详细透彻.由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读.在学习完本书后,读者将具备搭建自己的深度学习环境.建立图像识别模型.生成图像和文字等能力. 作者简介 [作者简介] 弗朗索瓦•肖莱(Franç…
Keras作者.谷歌大脑François Chollet最新撰写的深度学习Python教程实战书籍(2017年12月出版)介绍深入学习使用Python语言和强大Keras库,详实新颖.PDF高清中文版+英文版+源代码,这本书让你通过直观的解释和实例学习深度学习,不得不看. 下载地址:https://www.fageka.com/i/7Z3LFji1434…