前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 401: 则得到一个截然不同的解: x1 = 40000, x2 = 79800. 当解集 x 对 A 和 b 的系数高度敏感,那么这样的方程组就是病态的 (ill-conditioned). 2. 条件数 那么,如何评价一个方程组是病态还是非病态的呢?在此之前,需要了解矩阵和向量的 norm, 这里…
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−−−−−−−√ ∥x∥∞=max(|x1|,-,|xn|) 这里不做解释的给出例如以下示意图: 当中,0范数表示向量中非0元素的个数. 上图中的图形被称为lp ball. 表征在同一范数条件下,具有相同距离的点的集合. 范数满足例如以下不等式: ∥A+B∥≤∥A∥+∥B∥(三角不等式) 向量范数推广可…
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder…
转载请注明原地址:http://www.cnblogs.com/connorzx/p/4170047.html 提出原因 基于余弦定理对文本和词汇的处理需要迭代的次数太多(具体见14章笔记),为了找到一个一步到位的办法,可以使用奇异值分解(SVD分解) 算法实现 建立一个M-by-N的矩阵A,其中行表示M篇文章,列表示N个词.aij表示第j个词在第i篇文章中出现的加权词频.将A进行奇异值分解,A=XBY,X为M-by-R矩阵,B为R阶方阵,Y为R-by-N矩阵.若R<<M,N,则存储量和计算量…
希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我们有一个Data Matrix $\mathbf{X}\in \mathbb{R}^{n\times d}$ 我们首先必须要做的事情就是对这个Data Matix进行标准化,意义是:“取消由于量纲不同.自身变异或者数值相差较大所引起的误差.”这个解释还不是很明白,那么我们可以想象如果不进行标准化会发…
机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集中在模型的构建.优化等方面,对数据预处理的理论研究甚少,可以说,很多数据预处理工作仍然是靠工程师的经验进行的.从业数据建模/挖掘工作也有近2年的时间,在这里结合谈一谈数据预处理中归一化方法. 在之前的博客中转载了一篇关于维归约的文章:数据预处理之归一化.论述的比较简单,有兴趣的可以先了解一下. 在这…
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有一个这样的方程组: \[Ax=b\] 其中,\(A \in R^{m \times n},x,b \in R^n\) 当\(m=n\)时,且\(rank(A)=n\)时,这是一个适定方程组,有唯一解\(x=A^{-1}b\) 当\(m<n\)时,或者\(rank(A)<n\)时,这是一个欠定方程组…
CSS3中的矩阵 CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3,如下面矩阵示意图:3D变换则是4*4的矩阵. 有些迷糊?恩,我也觉得上面讲述有些不合时宜.那好,我们先看看其他东西,层层渐进--transform属性. transform中有这么几个属性方法: .trans_skew { transform: skew(35deg); }//元素翻转给定的角度 .trans_…
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实…