Apriori算法进行关联分析】的更多相关文章

前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出现在一块的物品的集合. 关联规则(associational rules): 暗示两种物品之间可能存在很强的关系. 相关术语 关联分析(关联规则学习): 从大规模数据集中寻找物品间的隐含关系被称作 关联分析(associati analysis) 或者 关联规则学习(association rule…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
从大规模的数据集中寻找隐含关系被称作为关联分析(association analysis)或者关联规则学习(association rule learning). Apriori算法 优点:易编码实现 缺点:在大数据集上可能较慢 使用数据类型:数值型或者标称型数据 关联分析寻找的是隐含关系,这些关系可以有两种形式:频繁项集或者关联规则. 频繁项集(frequent item sets)是经常出现在一起的集合 关联规则(association rule)暗示两种物品之间可能存在很强的关系 项集的支…
关联分析是一种在大规模数据集中寻找有趣关系的任务.这些关系可以有两种形式:频繁项集或者关联规则.频繁项集是指经常出现在一块的物品的集合,关联规则暗示两种物品之间可能存在很强的关系.一个项集的支持度被定义为数据集中包含该项集的记录所占的比例.可信度或置信度是针对一条诸如{尿布}->{葡萄酒}的关联规则来定义的.这条规则的可信度被定义为"支持度({尿布->啤酒})/支持度({尿布})" 尽管大部分关联规则分析的实例来自零售业,但该技术同样可以用于其他行业,比如网站流量分析以及医…
设全集U = {a, b, c, d, e},其元素a,b, c, d, e称为项. 数据集: D = [ {a, b}, {b, c, d}, {d, e}, {b, c, e}, {a,b, c, d} ] 项的集合如{a,b}称为项集(cell), 包含k个项的集合称为k项集. 数据集D中包含项集A的集合占所有元素集的比例称为A的支持度(support).如{a}的支持度为2/5. 若项集满足人为设定的最小支持度,则称为频繁集. 频繁集的任意子集一定是频繁集, 非频繁集的超集一定为非频繁集…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
二.Apriori算法 上文说到,大多数关联规则挖掘算法通常采用的策略是分解为两步: 频繁项集产生,其目标是发现满足具有最小支持度阈值的所有项集,称为频繁项集(frequent itemset). 规则产生,其目标是从上一步得到的频繁项集中提取高置信度的规则,称为强规则(strong rule).通常频繁项集的产生所需的计算远大于规则产生的计算花销. 我们发现频繁项集的一个原始方法是确定格结构中每个候选项集的支持度.但是工作量比较大.另外有几种方法可以降低产生频繁项集的计算复杂度. 减少候选项集…
三.FP-tree算法 下面介绍一种使用了与Apriori完全不同的方法来发现频繁项集的算法FP-tree.FP-tree算法在过程中没有像Apriori一样产生候选集,而是采用了更为紧凑的数据结构组织tree, 再直接从这个结构中提取频繁项集.FP-tree算法的过程为: 首先对事务中的每个项计算支持度,丢弃其中非频繁的项,每个项的支持度进行倒序排序.同时对每一条事务中的项也按照倒序进行排序. 根据每条事务中事务项的新顺序,依此插入到一棵以Null为根节点的树中.同时记录下每个事务项的支持度.…