SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大于1的约束条件,可以对每个样本$(x_i, y_i)$引进一个松弛变量$\xi_i \ge 0$,使函数间隔加上松弛变量大于等于1,, $$y_i (w \cdot x_i + b) \ge 1 - \xi_i$$ 目标函数变为 $$\frac 1 2 {||w||^2} + C \sum_{j=1…
以下均为自己看视频做的笔记,自用,侵删! 还参考了:http://www.ai-start.com/ml2014/ 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的水平.比如:你为学习算法所设计的特征量的选择,以及如何选择正则化参数,诸如此类的事.还有一个更加强大的算法广泛的应用于工业界和学术界,它被称为支持向量机(Support Vector Machine)…
一.背景 新闻分类是文本挖掘领域较为常见的场景.目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源.本文尝试通过智能的文本挖掘算法对于新闻文本进行分类.无需任何人肉打标,完全由机器智能化实现. 本文通过PLDA算法挖掘文章的主题,通过主题权重的聚类,实现新闻自动分类.包括了分词.词型转换.停用词过滤.主题挖掘.聚类等流程. 二.数据集介绍 具体字段如下: 字段名 含义 类型 描述 category 新闻类型 string 体育.女性.社会.军事.科技等…
一.简介 支持向量机(svm)的想法与前面介绍的感知机模型类似,找一个超平面将正负样本分开,但svm的想法要更深入了一步,它要求正负样本中离超平面最近的点的距离要尽可能的大,所以svm模型建模可以分为两个子问题: (1)分的对:怎么能让超平面将正负样本分的开: (2)分的好:怎么能让距离超平面最近的点的距离尽可能的大. 对于第一个子问题:将样本分开,与感知机模型一样,我们也可以定义模型目标函数为: \[f(x)=sign(w^Tx+b) \] 所以对每对样本\((x,y)\),只要满足\(y\c…
建立smo.m % function [alpha,bias] = smo(X, y, C, tol) function model = smo(X, y, C, tol) % SMO: SMO algorithm for SVM % %Implementation of the Sequential Minimal Optimization (SMO) %training algorithm for Vapnik's Support Vector Machine (SVM) % % This…
  去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算法原理基本不懂.近日再次学习 RBM,觉得有必要将其整理成笔记,算是对那个代码的一个补充.  目录链接 (一)预备知识 (二)网络结构 (三)能量函数和概率分布 (四)对数似然函数 (五)梯度计算公式 (六)对比散度算法 (七)RBM 训练算法 (八)RBM 的评估 作者: peghoty 出处: http:…
S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO算法,其核心是怎么选择每轮优化的两个拉格朗日乘子,标准的SMO算法是通过判断乘子是否违反原问题的KKT条件来选择待优化乘子的,由KKT条件: 是否违反它,与这几个因素相关:拉格朗日乘子 .样本标记 .偏置b . b的更新依赖于两个优化拉格朗日乘子,这就可能出现这种情况:拉格朗日乘子 已经能使目标函数…
SMO算法--SVM(3) 利用SMO算法解决这个问题: SMO算法的基本思路: SMO算法是一种启发式的算法(别管启发式这个术语, 感兴趣可了解), 如果所有变量的解都满足最优化的KKT条件, 那么最优化问题就得到了. 每次只优化两个, 将问题转化成很多个二次规划的子问题, 直到所有的解都满足KKT条件为止. 整个SMO算法包括两个部分: 1, 求解两个变量的解析方法 2, 选择变量的启发式方法 求解两个变量的解析方法 先选择两个变量,其余的固定, 得到子问题: 更新 先不考虑约束条件, 代入…
二叉树常考算法整理 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Leetcode算法项目点star呀~~ 二叉树常考算法整理 前言 二叉树的类型 算法分类 遍历(Traversal)问题 先序.中序与后序遍历 利用两种遍历结果构造二叉树 递归问题 二叉树最大深度 二叉树最小深度 平衡二叉树判断 相同树 对称树 路径总和 二叉搜索树/排序树问题 验证二叉搜索树 唯一二叉搜索树 最低的二叉树共同祖先 前言 二叉树即子节点…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓非边界alpha指的就是那些不等于边界0或者C的alpha值.对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历.同时,该步骤会跳过那些已知的不会改变的alpha值,即. 在选择第一个alpha值后,算法会通过一个内循环来选择第二…
一:SVM算法 (一)见西瓜书及笔记 (二)统计学习方法及笔记 (三)推文https://zhuanlan.zhihu.com/p/34924821 (四)推文 支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 二:SMO算法 (一)见西瓜书及笔记 (二)统计学习方法及笔记 (三)见机器学习实战及笔记 (四)推文 支持向量机原理(四)SMO算法原理 三:代码实现(一)SMO中的辅助函数 (一)加载数据集 import numpy as np impor…
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在SVM的前三篇里,我们优化的目标函数最终都是一个关于$\alpha$向量的函数.而怎么极小化这个函数,求出对应的$\alpha$向量,进而求出分离超平面我们没有讲.本篇就对优化这个关于$\alpha$向量的函数的SMO算法做一个总结. 1. 回顾SVM优化目标函数 我们首先回顾下我们…
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kernel)的引入,松弛变量的软间隔优化(Outliers),最小序列优化(Sequential Minimal Optimization)等. 2. 核方法(Kernel):其实核方法的发展是可以独立于S…
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七).(八)都发布的比这个早,因为这个系列的博客是之前早就写好的,不过会抽空在后台修改,感觉自己看不出错误(当然因为水平有限肯定还是会有些错误)了之后再发出来.后面还有SVM.聚类.tree-based和boosting,但现在的情况是前八篇结束后,本系列无限期停更-…
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的SVM训练方法必须使用复杂的方法,并需要昂贵的第三方二次规划工具.而SMO算法较好地避免了这一问…
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优.关于SMO最好的资料就是他本人写的<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines>了. 我拜读了一下,下面先说讲义上对此…
前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不会进行对其推导一步一步罗列公式,因为当你真正照着书籍进行推导后你就会发现他其实没那么难,主要是动手.本篇主要集中与实现,即使用著名的序列最小最优化(SMO)算法进行求解,本篇实现的代码主要参考了Platt J. Sequential minimal optimization: A fast algo…
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html 另外一篇:http://www.cnblogs.com/vivounicorn/archive/2011/06/01/2067496.html 11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性S…
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kernel)的引入,松弛变量的软间隔优化(Outliers),最小序列优化(Sequential Minimal Optimization)等. 2. 核方法(Kernel):其实核方法的发展是可以独立于S…
SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每次循环选择两个alpha进行优化处理,一旦找出一对合适的alpha,那么就增大一个同时减少一个 这里指的合适必须要符合一定的条件 a. 这两个alpha必须要在间隔边界之外 b. 这两个alpha还没有进行过区间化处理或者不在边界上 SMO 伪代码大致如下: 创建一个 alpha 向量并将其初始化为…
[机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的.推荐参看SMO原文中的伪代码. 1.SMO概念 上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规…
在支持向量机模型的求解中,我们用到了SMO算法来求解向量α. 那么什么是SMO算法?在讲SMO算法之前.我们须要先了解下面坐标上升法. 1.坐标上升法 如果有优化问题: W是α向量的函数.利用坐标上升法(当然,求目标函数的最小时即为坐标下降法)求解问题最优的步骤例如以下: 算法的思想为:每次仅仅考虑一个变量进行优化,将其它变量固定.这时整个函数能够看作仅仅关于该变量的函数,能够对其直接求导计算. 然后继续求其它分变量的值,整个内循环下来就得到了α的一组值,若该组值满足条件.即为我们求的值,否则继…
讲授K近邻思想,kNN的预测算法,距离函数,距离度量学习,kNN算法的实际应用. KNN是有监督机器学习算法,K-means是一个聚类算法,都依赖于距离函数.没有训练过程,只有预测过程. 大纲: k近邻思想预测算法距离函数距离度量学习实验环节实际应用 k近邻思想: KNN基于模板匹配的思想,如要确定一个水果的类别,可以拿各种水果出来,看它和哪种水果长得像,就判定为哪种水果,这就是模板匹配思想.要拿一些实际的例子来,这些例子就相当于一些标准的模板,要预测样本属于哪个类型,就和这些例子比一遍,看和哪…
主要内容: 一.K-means算法简介 二.算法过程 三.随机初始化 四.二分K-means 四.K的选择 一.K-means算法简介 1.K-means算法是一种无监督学习算法.所谓无监督式学习,就是输入样本中只有x,没有y,即只有特征,而没有标签,通过这些特征对数据进行整合等操作.而更细化一点地说,K-means算法属于聚类算法.所谓聚类算法,就是根据特征上的相似性,把数据聚集在一起,或者说分成几类. 2.K-means算法作为聚类算法的一种,其工作自然也是“将数据分成几类”,其基本思路是:…
看完CSDN上结构之法,算法之道的支持向量机通俗导论(理解SVM的三层境界) http://blog.csdn.net/v_july_v/article/details/7624837     参考了台湾的林智仁教授写了一个封装SVM算法的libsvm库,下载地址: http://www.csie.ntu.edu.tw/~cjlin/libsvm/,此外下载了一份libsvm的注释文档,下载地址: http://www.pami.sjtu.edu.cn/people/gpliu/document…
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优. 关于SMO最好的资料就是他本人写的<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machines>了. 我拜读了一下,下面先说讲义上对…
支持向量机(Support Vector Machine)-----SVM之SMO算法(转) 此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的S…
第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变量,但是别忘了α是一个向量,有m个αi等着我们去优化,所以还是很麻烦,所以大神提出了SMO算法来解决这个优化问题. 关于SMO最好的资料还是论文<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector…
作者:JSong, 日期:2017.10.10 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能,这对"弱学习器"尤为明显. 目前,有三种常见的集成学习框架:bagging,boosting和stacking.第一种是并行的,各个基学习器之间不存在强依赖关系,代表是随机森林算法.后两者是串行的,基学习器之间存在强依赖关系,必须串行生成.具体可参见我的文章 机器学习|集成学习. 1.前向分步算法(forward…