何为梯度下降,直白点就是,链式求导法则,不断更新变量值. 这里讲解的代码为李宏毅老师机器学习课程中 class 4 回归展示 中的代码demo   Loss函数 python代码如下 import numpy as np import matplotlib.pyplot as plt # y_data = b + w * x_data x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.] # 10 个数 y_dat…
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个.这里主要介绍Mini-b…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) 今天这篇文章的主要内容是第3课的笔记 ML Lecture 3: Gradient Descent 1.要真正理解梯度下降算法的原理需要一定的数学功底.比如微积分.泰勒展开式等等......本文将从一个下山的场景开始,先提出…
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Gradient Descent:Stochastic Gradient Descent 特征缩放:Feature Scaling stochastic英 [stə'kæstɪk]  美 [sto'kæstɪk] adj. [数] 随机的:猜测的 1.如何调整 Learning Rates? 比如先大后小:…
1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplot as plt def cost_function(input_X, _y, theta): """ cost function of binary classification using logistic regression :param input_X: np.matr…
参考吴恩达<机器学习>, 进行 Octave, Python(Numpy), C++(Eigen) 的原理实现, 同时用 scikit-learn, TensorFlow, dlib 进行生产环境实现. 1. 原理 cost function gradient descent 2. 原理实现 octave cost function function J = costFunction(X, Y, theta) m = size(X, ); predictions = X * theta; sq…
梯度下降 Gradient Descent 梯度下降是一种迭代法(与最小二乘法不同),目标是解决最优化问题:\({\theta}^* = arg min_{\theta} L({\theta})\),其中\({\theta}\)是一个向量,梯度是偏微分. 为了让梯度下降达到更好的效果,有以下这些Tips: 1.调整学习率 梯度下降的过程,应当在刚开始的时候,应该步长大一些,以便更快迭代,当靠近目标时,步长调小一些. 虽然式子中的微分有这个效果,但同时改变一下学习率的值,可以很大程度加速这个过程.…
这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradient descent optimization algorithms 梯度下降优化算法概述 0. Abstract 摘要: Gradient descent optimization algorithms, while increasingly popular, are often used as…
概述   梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很多机器学习算法都是用它,甚至深度学习也是用它来求解最优解.所有优化算法的目的都是期望以最快的速度把模型参数θ求解出来,梯度下降法就是一种经典常用的优化算法. 梯度下降法的思想   思想就类比于生活中的一些事情,比如你去询问你的一个朋友工资多少,他不会告诉你,但是他会让你去猜,然后告诉你猜的结果.你每…
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度.比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y).对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂…