[THUPC 2023 初赛] 快速 LCM 变换】的更多相关文章

写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶…
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处理里则强调它是将图像信息从空间域往频率域转化的重要手段.最近从头学起数字图像处理,看完傅立叶变换之后,对于其中的计算方法快速傅立叶变换产生了好奇.于是搜索了下FFT,发现杭电上有几个这样的题目,其中点击率最高的是hdu1402*大数乘法. 大数乘法本来是一个n方的算法,经过FFT之后可以变为nlog…
快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具体请看手写版笔记 参考文献:picks miskcoo menci 阮一峰 Fast Fourier Transform 单位复数根 虚数 复数 \(i\),表示逆时针旋转90度 \(a+bi\),对应复平面上的向量 复数加法 同向量 复数乘法 "模长相乘,幅角相加",\((a+bi)*(…
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复杂度为O(n2).但是,利用分治策略和插值法来求解h(x),可以将时间复杂度降低至O(nlogn),从而大幅提升算法的效率.此求值算法将被应用于FFT算法中. 一.多项式求值 首先,由lagrange插值法可以知道,对于一个n-1次多项式,只要给定n个不同的点(xi, yi),我们就可以计算出多项式…
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致\(qwq\) 好的,那我们就开始我们的飞飞兔\(FFT\)算法吧! 偷偷说一句,\(FFT\)的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系--消去引…
BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 我们要把这个式子转换成多项式乘法的形式. 一个标准的多项式乘法是这样的: \[c_k = \sum_{i = 0}^{k} a[i] * b[k - i]\] 来看看原式: \[c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\] 将a翻转得到a': \[c_k…
快速莫比乌斯变换(FMT) 原文出处:虞大的博客.此仅作蒟蒻本人复习用~ 给定两个长度为n的序列 \(a_0, a_1, \cdots, a_{n-1}\)和\(b_0, b_1, \cdots, b_{n-1}\),你需要求出一个序列\(c_0, c_1, \cdots, c_{n-1}\),其中\(c_k\)满足:\(c_k = \sum\limits_{i \mid j = k} a_i b_j\).其中|表示按位或.\(n \leq 10^6\)表示序列长度. 显然发现\(i∣j=k\)…
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这种方法计算两个多项式相乘(逐位相乘)复杂度为\(O(n^2)\) 点值表示法 根据小学知识,一个\(n-1\)次多项式可以唯一地被\(n\)个点确定 即,如果我们知道了对于一个多项式的\(n\)个点\((x_1,y_1),(x_2,y_2)--(x_n,y_n)\) 那么这个多项式唯一满足,对任意\…
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级数也是形式幂级数的一种,只是集合的一种表现形式,无需考虑收敛或发散的含义 定义一个集合 \(S\) 的集合幂级数为 \(f\) ,那么我们就可以把集合 \(S\) 表示为如下形式 \(\begin{aligned}f=\sum _{T\subseteq S}f_{T}\cdot x^{T}\end{align…
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论为基础的具有循环卷积性质的快速数论变换(NTT). 在FFT中,通过$n$次单位复根即$\omega^n=1$的$\omega$来运算,而对于NTT来说,则是运用了素数的原根来运算. [原根] [定义] 对于两个正整数$a,m$满足$gcd(a, m)=1$,由欧拉定理可知,存在正整数$d\leq…