深入理解 Serverless 计算的并发度】的更多相关文章

什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm虚拟机上面的,每个拓扑都会被拆开多个组件分布式的运行在worker节点上. 1.worker 2.executor 3.task 这三个简单关系图: 一个worker工作进程运行一个拓扑的子集(其实就是拓扑的组件),每个组件的都会以executor(线程)在worker进程上执行,一个worker进…
Tasks & executors relation Q1. However I'm a bit confused by the concept of "task". Is a task an running instance of the component(spout or bolt) ? An executor having multiple tasks actually is saying the same component is executed for multi…
本文导读: 1 Worker.Executor.task详解 2 配置拓扑的并发度 3 拓扑示例 4 动态配置拓扑并发度 Worker.Executor.Task详解: Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker Process(工作进程)——Spout/Bolt中运行具体处理逻辑的进程2. Executor(线程.执行器)——物理线程3. Task(任务)——具体的处理逻辑对象 下图简要描述了这3者之间的关系: sto…
来自:https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html http://blog.csdn.net/derekjiang/article/details/9040243 概念理解 原文中用了一张图来说明在一个storm cluster中,topology运行时的并发机制. 其实说白了,当一个topology在storm cluster中运行时,它的并发主要跟3个…
1. 核心原理 一个运行中的拓扑是由什么组成的:worker进程,executors和tasks.Storm是按照下面3种主要的部分来区分Storm集群中一个实际运行的拓扑的:Worker进程.Executors (线程) 以及真正实施计算的Tasks(任务),先简单回顾一下storm几个核心概念: tuple :元组,数据结构,有序的元素列表.通常是任意类型的数据,使用","号分割,交给storm计算. Stream :一系列tuple. Spouts :水龙头.数据源. Bolts…
理解Serverless No silver bullet. - The Mythical Man-Month 许多年前,我们开发的软件还是C/S(客户端/服务器)和MVC(模型-试图-控制器)的形式,再后来有了SOA,最近几年又出现了微服务架构,更新一点的有Cloud Native(云原生)应用,企业应用从单体架构,到服务化,再到更细粒度的微服务化,应用开发之初就是为了应对互联网的特有的高并发.不间断的特性,需要很高的性能和可扩展性,人们对软件开发的追求孜孜不倦,希望力求在软件开发的复杂度和效…
理解serverless无服务 阅读目录 一:什么是serverless无服务? 二:与传统模式架构区别? 三:serverless优缺点? 四:使用serverless的应用场景有哪些? 回到顶部 一:什么是serverless无服务? serverless中文的含义是 "无服务器",但是它真正的含义是开发者再也不用过多考虑服务器的问题,但是并不代表完全去除服务器,而是我们依靠第三方资源服务器后端,比如使用 Amazon Web Services(AWS) Lambda. 计算服务来…
题记:昨晚在一个技术社区直播分享了"利用Azure Functions和k8s构建Serverless计算平台"这一话题.整个分享分为4个部分:Serverless概念的介绍.Azure Functions的简单介绍.k8s和KEDA的介绍和最后的演示. Serverless Serverless其实包含了两种概念:BaaS(Backend as a Service)和FaaS(Function as a Service).这次的分享主要针对的是FaaS概念. FaaS的最大特征就是:…
前言: 学了几天storm的基础,发现如果有hadoop基础,再理解起概念来,容易的多.不过,涉及到一些独有的东西,如调度,如并发度,还是很麻烦.那么,从这一篇开始,力争清晰的梳理这些知识. 在正式学习并发之前,有必要先明确几个基本概念的定义,以及具体作用. 一.基础概念 1.1 Topology 原意拓扑.可以把他理解为是hadoop中的job,他是把一系列的任务项组装后的一个结果. 1.2 Spout 是任务的一种,作用是读取数据,然后组装成一定的格式,发射出去. 1.3 Bolt 是另一种…
Spouts,流的源头 Spout是Storm里面特有的名词,Stream的源头,通常是从外部数据源读取tuples,并emit到topology Spout可以同时emit多个tupic stream,通过OutputFieldsDeclarer中的declareStream,method来定义 Spout需要实现RichSpout端口,最重要的方法是nextTuple,storm会不断调用接口从spout中取数据,同时需要注意的是Spout分为reliable or unreliable两种…