一.迁移学习的概念 什么是迁移学习呢?迁移学习可以由下面的这张图来表示: 这张图最左边表示了迁移学习也就是把已经训练好的模型和权重直接纳入到新的数据集当中进行训练,但是我们只改变之前模型的分类器(全连接层和softmax/sigmoid),这样就可以节省训练的时间的到一个新训练的模型了! 但是为什么可以这么做呢? 二.为什么可以使用迁移学习? 一般在图像分类的问题当中,卷积神经网络最前面的层用于识别图像最基本的特征,比如物体的轮廓,颜色,纹理等等,而后面的层才是提取图像抽象特征的关键,因此最好的…
前言:学习的课程来自极客时间的专栏<趣谈 Linux 操作系统>,作者用形象化的比喻和丰富的图片让课程变得比较易懂,为了避免知识看过就忘,打算通过写学习笔记的形式记录自己的学习过程. Linux 系统的相关介绍不再赘述,目前比较热门的技术,比如云计算.虚拟化.容器.大数据.人工智能,几乎都是基于 Linux 的,像团购.电商.打车.快递这些系统都是部署在服务端,也几乎都是基于 Linux 技术的.想进大公司,想学新技术,Linux 一定是一道绕不过去的坎,只有扎实掌握 Linux 操作系统相关…
本文原创是freas_1990,转载请标明出处:http://blog.csdn.net/freas_1990/article/details/9304991 从大二开始学习Linux内核,到现在已经4年了.在大学的时候,学习Linux内核仅仅是作为一种爱好,因为国内罕有人能在本科毕业之后直接从事Linux内核研发工作,而哦也从未打算读研. 学习内核是一件很有趣的事情.仅仅是出于兴趣.当很想知道命令是如何从键盘输入到计算机并且关联到进程的时候,我翻出了Linux内核的源代码.然而,面对的问题越来…
1. sys.argv[1:]  # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得what这个数值 # test.py import sys print(sys.argv[1:]) 2. tf.split(value=x, num_or_size_split=2, axis=3) # 对数据进行切分操作,比如原始维度为[1, 227, 227, 96], 切分后的维度为[2, 1,…
首先,我们知道操作系统是管理和控制计算机硬件与软件资源的计算机程序.这里把操作系统想象为一个软件外包公司,其内核就相当于这家外包公司的老板,那么我们可以把自己的角色切换成这家外包公司的老板,设身处地的去理解操作系统是如何协调各种资源,帮客户做成事情的. 以鼠标双击 QQ 到运行整个过程理解操作系统: 鼠标是输入设备,鼠标双击 QQ 要通过输入设备驱动知道鼠标的动作(外包公司要通过客户对接员知道客户的需求): 鼠标双击后产生一个指令,然后会产生中断,调用一个中断处理函数,弄明白指令的含义(了解客户…
在前面的文章中,我们通常是拿到一个任务,譬如图像分类.识别等,搜集好数据后就开始直接用模型进行训练,但是现实情况中,由于设备的局限性.时间的紧迫性等导致我们无法从头开始训练,迭代一两百万次来收敛模型,所以这个时候迁移学习就派上用场了. 什么是迁移学习? 迁移学习通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三.由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识.比如,已经会下中国象棋,就可以类比着来…
参考极客时间专栏<趣谈Linux操作系统>学习笔记 核心原理篇:内存管理 趣谈Linux操作系统学习笔记:第二十讲 趣谈Linux操作系统学习笔记:第二十一讲 趣谈Linux操作系统学习笔记:第二十四讲 趣谈Linux操作系统学习笔记:第二十五讲 趣谈Linux操作系统学习笔记:第二十六讲 核心原理篇:文件系统 趣谈Linux操作系统学习笔记:第二十八讲 趣谈Linux操作系统学习笔记:第二十九讲…
https://www.jqr.com/article/000225 这篇文章的目的是帮助新手和外行人更好地了解我们新论文,我们的论文展示了如何用更少的数据自动将文本分类,同时精确度还比原来的方法高.我们会用简单的术语进行解释自然语言处理.文本分类.迁移学习.语言建模.以及我们的方法是如何将这几个概念结合在一起的.如果你已经对NLP和深度学习很熟悉了,可以直接进入项目主页,查看相关技术信息:nlp.fast.ai/category/classification.html 简介 5月14日,我们发…
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9迁移学习 迁移学习的基础知识已经介绍过,本篇博文将介绍提高的部分. 提高迁移学习的速度 可以将迁移学习模型冻结的部分看做为一个函数,因为每次都要使用这个冻结模型的输出值来训练自己的网络层,这样从加载模型到预训练模型都会耗费一定的时间. 为此,可以将目标训练集通过冻结模型的输出保存到本地,作为新的训练数据集来训练自己的网络层,这样会更加快捷. 提高迁移学习的精度 如果自身的目标数据集与冻结模型所用的数据集差异较大或者…
1. 什么是迁移学习 迁移学习(Transformer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中.迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题. 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴. 找到目标问题的相似性,迁移学习任务就…