Roman numerals For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a “best” way of writing a particu…
For a number written in Roman numerals to be considered valid there are basic rules which must be followed. Even though the rules allow some numbers to be expressed in more than one way there is always a "best" way of writing a particular number…
Roman numerals 罗马数字的题目, 注意几个关键的数字即可: (100, 400, 500, 900) -> ('C', 'CD', 'D', 'CM'); (10, 40, 50, 90)->('X', 'XL', 'L', 'XC') 1 def checkio(data): 2 rel = '' 3 4 thonsand = data / 1000 5 rel += thonsand * 'M' 6 7 data %= 1000 8 9 table = [['C', 'CD'…
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest product in a grid # In the 20×20 grid below, four numbers along a diagonal line have been marked in red. # The product of these numbers is 26 × 63 × 78 ×…
本题来自 Project Euler 第2题:https://projecteuler.net/problem=2 # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. # By starting with 1 and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # By…
Roman Numerals All In One 罗马数字 refs https://www.mathsisfun.com/roman-numerals.html https://www.mathsisfun.com/roman-numerals.html#convert xgqfrms 2012-2020 www.cnblogs.com 发布文章使用:只允许注册用户才可以访问!…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we list all the natural numbers below 10 # that are multiples of 3 or 5, we get 3, 5, 6 and 9. # The sum of these multiples is 23. # Find the sum of all…
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个等式均不会成立.然后,不可能a,b为奇c为偶,否则a*a%4=1, b*b%4=1, 有(a*a+b*b) %4 = 2,而c*c%4 = 0.也就是说,a和b中至少有一个偶数. 这是勾股数的一个性质,a,b中至少有一个偶数. 然后,解决过程见下(来自project euler的讨论): tag:m…
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads Pentagonal numbers are generated by t…