Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 None,不然就会报错.因此,我们就需要处理 Pandas 的缺省值. 样本数据 id name password sn sex age amount content remark login_date login_at created_at 0 1 123456789.0 NaN NaN NaN 20…
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, 二的基础上继续总结. 前面所介绍的都是以表格的形式中展现数据, 下面将介绍Pandas与Matplotlib配合绘制出折线图, 散点图, 饼图, 柱形图, 直方图等五大基本图形. Matplotlib是python中的一个2D图形库, 它能以各种硬拷贝的格式和跨平台的交互式环境生成高质量的图形,…
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表df import pandas as pd df = pd.DataFrame({"地区": ["A区","B区", "C区"], "前半年销量": [3500, 4500,3800], "后半年销…
Pandas介绍: pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. Pandas的主要功能: 1)具备对其功能的数据结构DataFrame.Series 2)集成时间序列功能 3)提供丰富的数学运算和操作 4)灵活处理缺失数据 python里面安装.引入方式: 安装方法:pip install pandas 引用方法:import pandas as pd Series数组的创建: 创建空的的值 import pandas as pd s = pd.Series(…
pandas数据结构 1.生成一维矩阵模拟数据 import pandas as pdimport numpy as nps = pd.Series([1,2,3,4,np.nan,9,9])s2 = pd.date_range('20181201',periods=6)#periods周期​ 2.生成二维矩阵模拟数据 import pandas as pdimport numpy as np#(1)创建二维矩阵df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]…
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维…
Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际,真实世界数据分析的基础高级构建块.此外,它还有更广泛的目标,即成为任何语言中最强大,最灵活的开源数据分析/操作工具.它已朝着这个目标迈进 pandas组成 = 数据面板+数据分析工具 pandas把数据分为3类 一位矩阵:Series 强大在可以存储任意类型数据 二维矩阵: DataFrame 三维…
pandas 10分钟教程(二) 重点发法 分组 groupby('列名') groupby(['列名1','列名2',.........]) 分组的步骤 (Splitting) 按照一些规则将数据分为不同的组,拆分 (Applying) 对于每组数据分别执行一个函数.'应用,申请' (Combining) 将结果组合到一个数据结构, '组合/合并' import pandas as pd#根据A分组后求和df.groupby('A').sum()#分组,指定具体列的出来函数   #reset_…
pandas熊猫10分钟教程 排序 df.sort_index(axis=0/1,ascending=False/True) df.sort_values(by='列名') import numpy as npimport pandas as pd#生成10行10列的随机整数np.radnom.randint(10,size=(10,10))#按照多列排序,现根据第一列排序,在根据第二列排序,都是升序df.sort_values(by=['列明1','列明2',....]) pandas重点方法…
对重复值的处理 把数据结构中,行相同的数据只保留一行 函数语法: drop_duplicates() from pandas import read_csv df = read_csv(文件位置) newdf = df.drop_duplicates(); 对缺失值的处理 缺失值的产生 1.有些信息暂时无法获取 2.有些信息被遗漏或者错误处理了 缺失值的处理方式 1.数据补齐 2.删除对应缺失行 3.不处理 缺失值处理 dropna函数的作用:去除数据结构中值为空的数据 dropna函数语法:d…