OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR one vs rest,即一对剩余所有,如字面意思,有的时候称为OvA,one vs all 假设有四个类别,对于这种分类问题,可以将一个类别选中以后,使其他三个类别合并为一个类别,即其它类别,这样就换变为二分类问题了,这种可以形成四种情况,选择预测概率高的,也就是说,有n个类别就进行n次分类,然…
1.介绍 KNN是k nearest neighbor 的简称,即k最邻近,就是找k个最近的实例投票决定新实例的类标.KNN是一种基于实例的学习算法,它不同于贝叶斯.决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类.KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高.KNN算法需要人为决定K的取值,即找几个最近的实例,k值不同,分类结果的结果也会不同. 2.举例 看如下图的训练…
循环 在javaScript中的四种循环中(for.for-in.while.do-while),只有for-in循环比其它几种明显要慢,另外三种速度区别不大 有一点需要注意的是,javascript没有块级作用域,只有函数级作用域,也就是说在for循环初始化中的var语句会创建一个函数级变量而非循环级变量 优化循环的方法有如下 1.减少对象成员及数组项的查找次数(使用局部变量保存需要查找的对象成员) 2.颠倒数组的顺序来提高循环性能,也就是从最后一项开始向前处理 for (var i = ar…
实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: XfceTerminal: Linux 命令行终端,打开后会进入 Bash 环境,可以使用 Linux 命令: Firefox:浏览器,可以用在需要前端界面的课程里,只需要打开环境里写的 HTML/JS 页面即可: GVim:非常好用的编辑器,最简单的用…
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.Cover和Hart在1968年提出了最初的邻近算法.KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
K近邻(KNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一. 所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.KNN算法的核心思想是如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特征.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别.KNN方法在类别决策时,只与极少数的相邻样本有关.由于kNN方法主要靠周围有限的邻近的…
不多说,直接上干货! 决策树二元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集 决策树多元分类的分类数目numClasses控制 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype数据集…
一.选择正确的特征 1.建立分类器的工作中如何选择相关特征,并且为其编码来表示这些特征是首要问题. 2.特征提取,要避免过拟合或者欠拟合 过拟合,是提供的特征太多,使得算法高度依赖训练数据的特性,而对于一般化的新例子不起作用,在小型训练集上通常会出现这种问题. 欠拟合,是特征太少,算法不能很好地反映实例的特性 3.用错误分析的方法来完善特征集,首先选择开发集,其中包含用于创建模型的语料数据.然后开发集分为训练集和开发测试集. >>> train_names = names[1500:]…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
  一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提出的一种分类算法. 计算距离公式: 两个样本的距离可以通过如下公式计算,又叫欧式距离. 比如说,a(a1,a2,a3),b(b1,b2,b3)   欧式距离 二.K近邻算法的实现 sk-learn近邻算法API sklearn.neighbors.KNeighborsClassifier(n_nei…
k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片.动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中接吻镜头相对更多.当然动作片中也有一些接吻镜头,爱情片中也会有一些打斗镜头.所以不能单纯通过是否存在打斗镜头或者接吻镜…
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们自然得有评价依据.到目前为止,我们讨论分类的有效性都是基于分类成功率来说的,但是这个指标科学吗?我们不妨考虑这么一个事实:一个样本集合里有95个正例,5个反例,分类器C1利用似然的思想将所有的实例均分成正例,分类成功率为95%:分类器C2成功分出了80个正例,3个反例,分类成功率仅83%.我们可以说…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习.   一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器,它根据给定样本属于某一个具体类的概率来对其进行分类. 2)贝叶斯分类器的理论基础是贝叶斯理论. 3)贝叶斯分类器的一种简单形式是朴素贝叶斯分类器,跟随机森林.神经网络等分类器都有可比的性能. 4)贝叶斯分类器是一种增量型的分类器.   二:贝叶斯理论 第一次接触贝叶斯还是本科学概率论的时候,那时候…
SparkMLib分类算法之朴素贝叶斯分类 (一)朴素贝叶斯分类理解 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.简单来说,朴素贝叶斯分类器假设样本每个特征与其他特征都不相关.举个例子,如果一种水果具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果.尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的.尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果.…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性. 三. 能够同时处理数据型和常规型属性.其他的技术往往要求数据属性的单一. 四. 决策树是一个白盒模型.如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式. 五. 易于通过静态测试来对模型进行评测.表示有可能测量该…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
决策树(Decision tree) 决策树是以实例为基础的归纳学习算法.     它从一组无次序.无规则的元组中推理出决策树表示形式的分类规则.它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从 该结点向下分支,叶结点是要学习划分的类.从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则.1986年 Quinlan提出了著名的ID3算法.在ID3算法的基础上,1993年Quinlan又提出了C4.5算法.为了适应处理大规模数据集的需要…
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍过,图片的特征是不能采用像素的灰度值的,这部分原理的台阶有点高,还好可以直接使用通过TensorFlow训练过的特征提取模型(美其名曰迁移学习). 模型文件为:tensorflow_inception_graph.pb 二.样本介绍 我随便在网上找了一些图片,分成6类:男孩.女孩.猫.狗.男人.女人…
目录 一.监督式分类:建立在训练语料基础上的分类 特征提取器和朴素贝叶斯分类器 过拟合:当特征过多 错误分析 二.实例:文本分类和词性标注 文本分类 词性标注:"决策树"分类器 三.更近一步的连续分类或贪婪序列分类:在朴素贝叶斯和"决策树"之后 四.评估 五.三种分类器的总结 六.后记 关于分类文本,有三个问题 怎么识别出文本中用于明显分类的特征 怎么构建自动分类文本的模型 相关的语言知识 按照这个思路,博主进行了艰苦学习(手动捂脸..) 一.监督式分类:建立在训练…
一.决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序.无规则的实例中 推理出以决策树表示的分类规则.构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别.它采用自顶向下的递归方式,在决策树的 内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论. 主要的决策树算法有ID3.C4.5(C5.0).CART.PUBLIC.SLIQ和SPRINT算法等.它们在选择测试属性采用的技术.生…
摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] 二十三.基于机器学习和TFIDF的情感分类(含详细的NLP数据清洗)>,作者: eastmount. 在数据分析和数据挖掘中,通常需要经历前期准备.数据爬取.数据预处理.数据分析.数据可视化.评估分析等步骤,而数据分析之前的工作几乎要花费数据工程师近一半的工作时间,其中的数据预处理也将直接影响后续模型…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. SVM是一种监督式学习的方法. 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点 机:就是算法,机器学习常把一些算法看作是一个机器 SVM 其实就是一种很有用的二分类方法. 超平面: n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全…
算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感.而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的. 一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣.最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于…
Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同认识.他并不推荐深度学习为通用的分类技术. [编者按]针对Quora上的一个老问题:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain近日给出新的解答,他根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同…