深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 反向传播算法这里是用到 chain rule(链式法则)的,如下图所示: 这个应该没什么问题.大家都学过的. 我们知道总的loss 是由各个小的 loss 组合得到的,那么我们在求解 Loss 对每一个参数的微分的时候,只要对每一个 loss 都这么算就可以了.那么我们以后的例子都是以…
注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推导中所使用的神经网络如上图所示.一个神经网络由多个层(layer)构成,每一层有若干个节点(node),最左边是输入层,中间的层被称为隐含层,最右边是输出层:上一层节点与下一层节点之间,都有边相连,代表上一层某个节点为下一层某个节点贡献的权值. 接下来对推导中使用的符号做一个详细的说明,使推导的过程…
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inputs. ----cs231n 2.what problems to slove? 2.1introduction 神经网络的本质是一个多层的复合函数,图: 表达式为: 上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b.…
全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^1, x^2, \cdots, x^n\}, Y=\{y^i, y^2, \cdots, y^n\}\),反向传播算法使用数据集中的每一个样本执行前向传播,之后根据网络的输出与真实标签计算误差,利用误差进行反向传播,更新权重: 使用一个样本\((x, y)\),其中\(x=(x_1, x_2, \cdots,…
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源:知乎 类比来说类似于几个人站成一排第一个人看一幅画(输入数据),描述给第二个人(隐层)……依此类推,到最后一个人(输出)的时候,画出来的画肯定不能看了(误差较大).反向传播就是,把画拿给最后一个人看(求取误差),然后最后一个人就会告诉前面的人下次描述时需要注意哪里(权值修正).不知明白了没有,如果…
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问…
课程主页:http://cs231n.stanford.edu/ 上节讲到loss function: 引出了求导数使得loss function减小. -Back Propagation :梯度下降+链式求导法则: 这节的课件讲的比较细,先引用一下其他资源: 1.http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html 2.http://colah.github.io/posts/2015-08-Backprop/   矩阵运算: p…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…
先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于0的均匀分布,它的方差选择应该使得神经元的诱导局部域的标准偏差位于sigmoid激活函数的线行部分与饱和部分过渡处. (1)训练样本的呈现.呈现训练样本的一个回合给网络.对训练集中以某种形式排序的每个样本,一次进行下面的第3点和第4点中所描述的前向和反向计算. (2)前向计算.在该回合中设一个训练样…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…