题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中首尾颜色相同的情况下最优,所以每次选取一段里末位的$s_i$变成柠檬,于是有$f_i=max_{j \le i}{f_{j-1}+s_i\times(pre_i-pre_j+1)^2}$ ,$pre_i$表示前$i$个贝壳里$s_i$出现了几次 令$j<k$,假设$f_{j-1}+s_i\times…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GXZlegend/p/8615607.html 这道题和之前写的斜率优化不同的一点是用单调栈维护上凸壳,而且需要二分查找答案: 为什么感觉每次写出来的斜率优化DP都不一样...还是没有理解透彻... 代码如下: #include<iostream> #include<cstdio> #i…
3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 10 2 3 1 5 4 5 6 3 1 2 Sample Output 18 HINT 1<=N<=10^6,1<=Ai<=10^9 题解: 斜率优化DP: 首先将数组倒置 设定dp[i] 为前i的点的最优答案 易得 dp[i] = min{dp…
题目链接 双倍经验 设\(H\)表示长,\(W\)表示宽. 若\(H_i<H_j\)且\(W_i<W_j\),显然\(i\)对答案没有贡献. 于是把所有点按\(H\)排序,然后依次加入一个按\(W\)降序排序的单调栈. 这个单调栈里就是一定对答案有贡献的点,现在的问题就是把这些点分段,使总费用最小. 设\(f[i]\)表示前\(i\)块土地的最小费用. 然后枚举断点\(0<=j<i\),则\(f[i]=\min(f[j]+W_{j+1}*H_i)\) 斜率优化搞一搞就行了. //…
显然选出的每一段首尾都是相同的,于是直接斜率优化,给每个颜色的数开一个单调栈即可. #include<cstdio> #include<vector> #include<cstring> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) typedef long long ll; using namespace std; ; ll n,ans,a[N],f[N],ls…
P1295 [TJOI2011]书架 本题思路比较好想(对我来说不是),但代码细节很多,奈何洛谷的题解只有思路,然后就是 没有丝毫解释的代码,让人看起来很头疼(~~ 尤其是像我这样的蒟蒻~~),所以便打算写一篇带 注释的题解: 题目大意 题目链接 给出一个长度为 n 的序列 h,请将 h 分成若干段,满足每段数字之和都不超过 m,最小化每段的 最大值之和. 解题思路 我们不难想到30分的n2做法,但期望得分30(据说实际有50) 我们定义f [ i ]为1 - i分段后的最大值和 可得dp方程…
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i]的形式,其中f[j]中保存了只与j相关的量.这样的DP方程我们可以用单调队列进行优化,从而使得O(n^2)的复杂度降到O(n). 可是并不是所有的方程都可以转化成上面的形式,比如dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j]).如果把右边的乘法化开的话,会得到x[i]*x[j…
这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为如果存在一个上突壳的话,那么上突壳的点是一定不会被选上的. 所以对于解来说,只有下凸壳的点再会被选到. 所以我们就可以用单调队列维护处这个下凸壳. 假如我们保证给定的k是单调递增的, 那么我们就可以把前面一段不需要的东西给删掉. 假如k不是单调的,则我们就可以用二分找到第一个 >  询问k的答案.…
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器…
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<…