>> import numpy as np >>> A1_mean = [1, 1] >>> A1_cov = [[2, .99], [1, 1]]>>> A1 = np.random.multivariate_normal(A1_mean, A1_cov, 10) #依据指定的均值和协方差生成数据 >>> A1array([[-1.72475813,     0.33681971],         [ 0.786437…
import numpy as np import pandas as pd df = pd.DataFrame({'var1':np.random.rand(100), #生成100个0到1之间的随机数 'var2':100, 'var3':np.random.choice([20,30,90]) #在这几个数之间选择 } ) for col in df.columns: print("该列数据的均值位%.2f" %df[col].mean()) #计算每列均值 print(df['…
今天看到这样一句代码: xb = np.random.random((nb, d)).astype('float32') #创建一个二维随机数矩阵(nb行d列) xb[:, 0] += np.arange(nb) / 1000. #将矩阵第一列的每个数加上一个值 要理解这两句代码需要理解三个函数 1.生成随机数 numpy.random.random(size=None) size为None时,返回float. size不为None时,返回numpy.ndarray.例如numpy.random…
从多元正态分布中抽取随机样本. 多元正态分布,多正态分布或高斯分布是一维正态分布向更高维度的推广.这种分布由其均值和协方差矩阵来确定.这些参数类似于一维正态分布的平均值(平均值或"中心")和方差(标准差或"宽度",平方). np.random.multivariate_normal方法用于根据实际情况生成一个多元正态分布矩阵,其在Python3中的定义如下: def multivariate_normal(mean, cov, size=None, check_va…
# -*- coding: utf-8 -*-"""主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新.Created on Fri Aug 24 19:57:53 2018 @author: Dev""" import numpy as np import random   # 常用函数 arr = np.arange(10) print(np.sqrt(arr))    # 求平方根 print(np.exp(arr))  …
学习链接:http://www.runoob.com/numpy/numpy-tutorial.html 官方链接:https://numpy.org/devdocs/user/quickstart.html 简介: numPy是python语言的一个扩展库,是一个运行非常快的数学库,主要用于数组计算.它支持大量的维度与数据运算还针对数组运算提供大量的数学函数库.它包含:一个强大的n维数组对象ndarray.广播功能函数.整合c/c++/fortran的工具.线性代数.傅里叶变化与随机数生成等功…
# -*- coding: utf-8 -*- """ 主要记录代码,相关说明采用注释形势,供日常总结.查阅使用,不定时更新. Created on Mon Aug 20 23:37:26 2018   @author: Dev """   import numpy as np from datetime import datetime import random     对a,b两个列表的相同位的元素进行运算求和: # 纯Python def…
在使用numpy进行矩阵运算的时候踩到的坑,原因是不能正确区分numpy.concatenate和numpy.stack在功能上的差异. 先说numpy.concatenate,直接看文档: numpy.concatenate((a1, a2, ...), axis=0, out=None) Join a sequence of arrays along an existing axis. Parameters a1, a2, … : sequence of array_like The arr…
1.返回值不同 range返回一个range对象,numpy.arange和numpy.linspace返回一个数组. 2.np.arange的步长可以为小数,但range的步长只能是整数. 与Python的range类似,arange同样不包括终值:但arange可以生成浮点类型,而range只能是整数类型. 3. 是否包含终值 arange()类似于内置函数range(),通过指定开始值.终值和步长创建表示等差数列的一维数组,注意得到的结果数组不包含终值. linspace()通过指定开始值…
导入numpy模块   from numpy import *   import numpy as np ##################################################### numpy.shape: help(shape) 输入参数:类似数组(比如列表,元组)等,或是数组 返回:一个整型数字的元组,元组中的每个元素表示相应的数组每一维的长度 类似数组   #一维列表   L=range(5)   shape(L)   #二维列表   L=[[1,2,3],…
Python 练习 标签: Python Python练习题 Python知识点 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数,如果大于预设的数,屏幕显示"太大了,请重新输入"如果小于预设的数,屏幕显示"太小了,请重新输入"如此循环,直到猜中,显示"恭喜你,猜中了!共猜了N次"N为用户猜测次数. 答案: import random def guess_number(): true_num…
random 是平时开发过程中常用的一个模块,该模块实现了各种分布的伪随机数生成器,以及和随机数相关的各种实用函数.基本函数 random() 在区间 [0.0, 1.0) 内均匀生成随机浮点数,是模块中几乎所有函数的基础. Python 使用 Mersenne Twister 作为核心生成器,由于完全确定性(对于给定的初始化条件,生成的随机数序列完全确定,所以称为"伪随机数"),该模块不适用于安全或加密用途. 由于入门语言是 C 语言,所以最开始用 Python 的时候还写过 x =…
1 RandomState 的应用场景概述 在训练神经网络时,苦于没有数据,此时numpy为我们提供了 “生产” 数据集的一种方式. 例如在搭建神经网络(一)中的 4.3 准备数据集 章节中就是采用np.random.mtrand.RandomState “生产” 数据的. 常用的方式如下 import numpy as np # 设置seed值,生成ndarray对象 SEED = 23455 # 基于seed产生随机数 rdm = np.random.mtrand.RandomState(S…
np.random.randint(low, high=None, size=None, dtype='l') 该函数作用:用于产生离散均匀分布的整数 low:生成元素的最小值 high:生成元素的值一定小于high值 size:输出的大小,可以是整数也可以是元组 dtype:生成元素的数据类型 注意:high不为None,生成元素的值在[low,high)区间中:如果high=None,生成的区间为[0,low)区间…
目录 目录 前言 (一)基础的随机函数 (二)轴的随机函数 (三)概率的随机函数 目录 前言 前一段日子学了numpy,觉得无趣,没有学完,不过后来看了看matplotlib,sympy等库时,频频用到numpy, numpy才是最基础的库. (一)基础的随机函数 (1)说明: (2)输出效果 a = np.random.rand(3, 4, 5) .randn(shape) randint(low, high,shape) seed(num)是一个种子随机数,一种整数,就对应一种随机变量. (…
目录 目录 前言 (一)函数一览表 (二)统计函数1 (三)统计函数2 目录 前言 具体我们来学Numpy的统计函数 (一)函数一览表 调用方式:np.* .sum(a) 对数组a求和 .mean(a) 求数学期望 .average(a) 求平均值 .std(a) 求标准差 .var(a) 求方差 .ptp(a) 求极差 .median(a) 求中值,即中位数 .min(a) 求最大值 .max(a) 求最小值 .argmin(a) 求最小值的下标,都处里为一维的下标 .argmax(a) 求最…
目录 目录 前言 (一)函数说明 (二)一维数组的应用 (三)多维数组的应用 目录 前言 梯度函数,其中的梯度也就是斜率,反映的是各个数据的变化率.在numpy中只有一个梯度函数. (一)函数说明 (二)一维数组的应用 (三)多维数组的应用 作者:Mark 日期:2019/02/12 周二…
目录 目录: (一)以文本形式存取 1.说明: 2.语法解释: 3.实例(以.csv文件为例) 4.效果展示 (二)以任意的形式存取 1.说明: 2.语法解释: 3.实例(以.bat二进制文件为例) 4.效果展示 (三)以np自定义的形式存取 1.说明: 2.语法解释: 3.实例: 4.实例展示 目录: 目录: 1.以文本形式存取 2.以任意的形式存取 3.以np自定义的形式存取 (一)以文本形式存取 1.说明: (1)适用范围:存储一维,二维数组 (2)局限性:不能存储多维数组 2.语法解释:…
meshgrid的目的是生成两套行列数一致的矩阵,其中一个是行重复,一个是列复制:可以这么来理解,通过ravel()将矩阵数据拉平之后,就可以将这两套矩阵累加在一起,形成一个两行数据,要达到这个效果是需要行列相同,这样就能够理解meshgrid行为了. 比如下面的数据,是原始的两个数组: t01: array([1., 2., 3.]) t02: array([4., 5.]) 经过了一些meshgrid的处理之后,形成了两个矩阵: ++++++++++++ t1 ++++++++++++ ar…
首先声明两者所要实现的功能是一致的(将多维数组降为一维),两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten()返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵,而numpy.ravel()返回的是视图(view,也颇有几分C/C++引用reference的意味),会影响(reflects)原始矩阵.…
例子 import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.c_[a,b] print(np.r_[a,b]) print(c) print(np.c_[c,a]) np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat().np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge().结果: [1 2 3 4 5…
两者所要实现的功能是一致的(将多维数组降为一维), 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten() 返回一份拷贝,对拷贝所做的修改不会影响(reflects)原始矩阵, 而numpy.ravel()返回的是视图(view),会影响(reflects)原始矩阵. 1.二者的功能 >>> x = np.array([[1, 2], [3, 4]]) >>> x array([[1, 2], [3, 4]]) >>>…
原始的 Python list 虽然很好用,但是不具备能够“整体”进行数学运算的性质,并且速度也不够快(按照视频上的说法),而 Numpy.array 恰好可以弥补这些缺陷. 初步应用就是“整体数学运算”和“subset(取子集.随机访问)”. 1.如何构造一个 Numpy array # Create list baseball baseball = [180, 215, 210, 210, 188, 176, 209, 200] # Import the numpy package as n…
两者都可实现将多维数组降位一维的功能 numpy.flatten()返回拷贝,对拷贝所做的修改不会影响原始矩阵 numpy.ravel()返回视图,会影响原始矩阵 1)ravel() In [16]: data Out[16]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) In [17]: data2 = data.ravel() #ravel() In [18]: data2 Out[18]: array([ 0, 1, 2,…
对于 import xxx 使用函数的方法为 x'x'x.Afunc 而对于 from xxx import * 调用函数的方法为 Afunc…
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍到的一些机器学习算法都是监督学习算法.所谓监督学习,就是既有特征数据,又有目标数据. 而本篇文章要介绍的K 均值算法是一种无监督学习. 与分类算法相比,无监督学习算法又叫聚类算法,就是只有特征数据,没有目标数据,让算法自动从数据中"学习知识",将不同类别的数据聚集到相应的类别中. 1,K 均值算法 K 均值的英文为K-Means,其含义是: K:表示该算法可以将数据划分到K 个不同的组中.…
openssl rand -hex n (n is number of characters) LANG=c < /dev/urandom tr -dc _A-Z-a-z-0-9 | head -c${1:-16};echo; (生成随机密码16) shell 生成指定范围随机数与随机字符串 热度5 评论 245 www.BkJia.Com  网友分享于:  2014-04-23 12:04:43     浏览数10854次   shell 生成指定范围随机数与随机字符串   1.使用系统的 $…
//文件 /* =============================================================== 题目:从文本文件"high.txt"中取出运动员的身高数据,并计算平均值,方差和标准差. =============================================================== */ #include<stdio.h> #include <math.h> #define hh pr…
java-word-MassProduction 目录 使用方法 开发流程 一.使用方法 1.制造题库所需Word模板 需要填充数据的地方使用 ${pid} 代替. 将这个word选择另存为,保存格式选择为xml,然后将这个xml放到项目的ftl目录下,后缀名改为.ftl . 2.配置数据库 项目中使用了hibernate,表结构可以自动生成,但前提得先有mysql数据库环境且创建好数据库,数据库连接信息可以在hibernate.hbm.xml中修改. 对应上面模板实例中的${pid}值,在对应…
生成随即数的时候,总是会短一个,因为它是从0开始的 这是左闭右闭区间. 循环100次输出的结果…