poj1284--原根的性质】的更多相关文章

因为给定的模数P保证是素数,所以P一定有原根. 根据原根的性质,若\(g\)是\(P\)的原根,则\(g^k\)能够生成\([1,P-1]\)中所有的数,这样的k一共有P-2个. 则\(a_i*a_j(mod\ P)=a_k\) 就可以转化为\(g^i*g^j(mod\ P) = g^{i+j}(mod\ P)=g^k\). 问题转化为了求有多少对有序的<i,j>满足 \((i+j)(mod\ (P-1)) = k\). 求出原根后,对\([1,P-1]\)中的每个数编号, 统计每个编号出现的…
还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0,和其他数规则不相符,所以不考虑(答案也没让求) 然后看原根的性质,设g是M的原根,那么\( g^i%M 0<=i<M-1 \)就是1~M-1的不重集合,所以可以把乘法变成原根指数的加法,这样就变成多项式乘法了,可以用NTT优化 然后n非常大,所以使用快速幂进行多项式乘法 #include<…
题目大意: 设\(f(i)\)为使\((x+y)^i \equiv x^i (mod\ p)\)成立的(x,y)的对数.其中\(1 \leq x \leq p-1 , 1\leq y\leq m\),m,p给定且p是一个质数.求\(\sum_{i=1}^{p-1}i*f(i)\),p<=1e9+7,m<=p-1 思路 我们考虑用原根去代换x,y. 设g为p的一个原根,\(g^a\equiv x(mod \ p),g^b \equiv y(mod \ p)\). 然后我们用\(g\)去代换\(x…
题意 已知kkk, aaa, ppp. 求 xk≡a (mod p)x^k\equiv a\ (mod\ p)xk≡a (mod p) 的所有根. 根的范围[0,p−1][0,p-1][0,p−1]. ppp为质数 分析 因为ppp是质数,那么一定有原根.设为ggg. 原根的性质如下: 对于[1,p−1][1,p-1][1,p−1]的所有iii,一定存在x∈[1,p−1]x\in[1,p-1]x∈[1,p−1]使得gx≡i (mod p)g^x\equiv i\ (mod\ p)gx≡i (mo…
原根&离散对数 1.原根 1.定义: 定义\(Ord_m(a)\)为使得\(a^d\equiv1\;(mod\;m)\)成立的最小的d(其中a和m互质) 由欧拉定理可知: \(Ord\le\Phi(m)\) 当\(Ord_m(a)=\Phi(m)时,称a是模m意义下m的一个原根\)(记住原根是a,不是d!) 2.原根的性质: 1.具有原根的数字仅有以下几种形式:\(2,4,p^n,2·p^n\)(p是奇质数) 2.一个数的最小原根的大小不超过 \(m^{\frac14}\) 3.若g是m的一个原…
按理说Po姐姐三月份来讲课的时候我就应该学了 但是当时觉得比较难加上自己比较懒,所以就QAQ了 现在不得不重新弄一遍了 首先说多项式求ln 设G(x)=lnF(x) 我们两边求导可以得到G'(x)=F‘(x)/F(x) 则G(x)就是F’(x)/F(x)的积分 我们知道多项式求导和积分是O(n)的,多项式求逆是O(nlogn)的 所以总时间复杂度O(nlogn) 多项式求ln一般解决的问题是这样的 设多项式f表示一些奇怪的东西,由一些奇怪的东西有序组成的方案为 f^1+f^2+f^3…… 化简之…
话说好久没来博客上面写过东西了,之前集训过于辛苦了,但有很大的收获,我觉得有必要把它们拿出来总结分享.之前一直是个数论渣(小学初中没好好念过竞赛的缘故吧),经过一道题目对一些基础算法有了比较深刻的理解,在这里我打算系统地讲出这道题目涉及的大部分内容,希望可以帮到大家. 原题地址:http://acm.sgu.ru/problem.php?contest=0&problem=261 题目大意:给出质数$p$.$k$和一个自然数$a$,求关于$x$的同余方程$x^k \equiv a \pmod p…
题意: 给出k个球和质数p,对每个球以公式val(i)=1^i+2^i+...+(p-1)^i (mod p)计算出它的价值,然后两个人轮流拿,最后拿到的球的总价值大的获胜,问我们先手是否获胜. 我们分成两种情况讨论: 情形1:i%(p-1)==0,即i是(p-1)的倍数,由费马小定理 a^(p-1)=1(mod p),可以套入公式得该球价值为 p-1; 情形2:i不是(p-1)的倍数,这时要用到原根的性质,对于一个正整数g和质数p,若g为p的原根,可将1,2,3...p-1表示为g^1,g^2…
题面 Bzoj Sol pts 1 大暴力很简单,\(f[i][j]\)表示到第\(i\)个位置,前面积的模为\(j\)的方案 然后可以获得\(10\)分的好成绩 # include <bits/stdc++.h> # define RG register # define IL inline # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; const int Zsy(…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…