格点拉格朗日插值与PME算法】的更多相关文章

如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第k(1e18)项(对质数取模) (原理: 拉格朗日插值) 预处理复杂度为线性, 每次计算复杂度为: O(传入项数个数)[同样也是线性] 以下代码为内测版, 出锅了fold不背锅, 欢迎指出bug ------------------------下面是模板代码---------------------…
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] 矩阵乘法是\(O(k^3 \log n)\) 利用特征多项式可以做到\(O(k^2\log n)\) 特征多项式 特征值和特征向量 特征多项式 \[ f(\lambda) = \mid M - \lambda I\mid \] 是关于\(\lambda\)的\(n\)次多项式 根据\(Cayley-…
题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格式 输入格式: 第一行两个正整数$n,k$,含义如题 接下来$n$行,每行两个正整数$x_i,y_i$,含义如题 输出格式: 一个整数表示答案 输入输出样例 输入样例#1: 复制 3 100 1 4 2 9 3 16 输出样例#1: 复制 10201 输入样例#2: 复制 3 100 1 1 2 2…
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
[题意]给定k<=123,a,n,d<=10^9,求: $$f(n)=\sum_{i=0}^{n}\sum_{j=1}^{a+id}\sum_{x=1}^{j}x^k$$ [算法]拉格朗日插值 [题解]参考:拉格朗日插值法及应用 by DZYO 虽然式子很复杂,但一点一点化简有条理的化简后就可以做了. 首先最后是一个自然数幂和: $$\sum_{x=1}^{j}x^k$$ 这是一个k+1次多项式,可以理解为k+一个Σ(一般一个Σ增加一次项). 然后会发现最后部分和第二部分之间不需要插值,因为第…
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1<A<mod<=10^9,mod是素数. [算法]动态规划+拉格朗日插值 [题解]这道题每个数字的贡献和序列选了的数字积关系密切,所以不能从序列角度考虑(和具体数字关系不大). 设$f_{n,m}$表示前n个数字(值域)中取m个数字的答案,那么枚举取或不取数字n,取n时乘n且有j个位置可以插入,即:…
[题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一位同学的一门必修课分数不同时视为两种情况不同.n,m<=100,Ui<=10^9. [算法]计数DP+排列组合+拉格朗日插值 [题解]把分数作为状态不现实,只能逐门课考虑. 设$f[i][j]$表示前i门课,有j个同学被碾压的情况数,则有: $$f[i][j]=g(i)\cdot\sum_{k=j…
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output There are well-known formulas: , , . Also mathematicians found similar formulas for higher degrees. Find th…
[模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 说明 $n \leq 2000 \; \; \; x_i,y_i,k \leq 998244353$ 自为风月马前卒的分析 拉格朗日插值法 众所周知,\(n + 1\)个\(x\)坐标不同的点可以确定唯一的最高为\(n\)次的多项式.在算法竞赛中,我们常常会碰到一类题目,题目中直接或间接的给出…
分析 之前一直不知道拉格朗日插值是干什么用的,只会做模板题,做了这道题才明白这个神奇算法的用法. 由题意可知,\(f(x)\)是关于\(x\)的\(k+1\)次函数,\(g(x)\)是关于\(x\)的\(k+2\)次函数,\(ans(x)\)是关于\(x\)的\(k+3\)次函数. 由于点值连续,插值可以做到\(O(n)\),求\(g(x)\)和\(ans(x)\)都需要插值,因此时间复杂度为\(O(Tn^2 \log n).(\)\log$是快速幂的,貌似可以通过预处理逆元优化掉,不过AC这道…