全卷积网络Fully Convolutional Networks (FCN)实战 使用图像中的每个像素进行类别预测的语义分割.全卷积网络(FCN)使用卷积神经网络将图像像素转换为像素类别.与之前介绍的卷积神经网络不同,FCN通过转置卷积层将中间层特征映射的高度和宽度转换回输入图像的大小,使得预测结果在空间维度(高度和宽度)与输入图像一一对应.给定空间维度上的位置,信道维度的输出将是对应于该位置的像素的类别预测. 将首先导入实验所需的包或模块,然后解释转置卷积层. %matplotlib inl…
摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题.与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像…
[Android自己定义View实战]之自己定义超简单SearchView搜索框 这篇文章是对之前文章的翻新,至于为什么我要又一次改动这篇文章?原因例如以下 1.有人举报我抄袭,原文链接:http://www.it165.net/pro/html/201407/17779.html. 呵呵...................................................................请大家细致看看,那个图片水印. 究竟是谁抄袭谁呢? 2.之前的那篇文章写得很…
深度卷积生成对抗网络(DCGAN) 我们在第3章实现了一个GAN,其生成器和判别器是具有单个隐藏层的简单前馈神经网络.尽管很简单,但GAN的生成器充分训练后得到的手写数字图像的真实性有些还是很具说服力的.即使是那些无法被识别为人类手写数字的字符,也具有许多手写符号的特征,例如可辨认的线条边缘和形状,特别是与用作生成器原始输入的随机噪声相比,更是如此. 想象一下,如果使用更强大的网络架构可以实现什么?本章中的生成器和判别器都将使用卷积神经网络(CNN,或 ConvNet),而不再是简单的双层前馈网…
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet的一些框架.尤其是跟alexnet框架很像.vgg也是5个group的卷积.2层fc图像特征.一层fc分类特征,能够看做和alexnet一样总共8个part.依据前5个卷积group.每一个group中的不同配置,vgg论文中给出了A~E这五种配置.卷积层数从8到16递增. 从论文中能够看到从8到1…
对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h) x和y表示的是左上角的位置,w和h表示的是矩形框的宽和高 目标检测是分类和回归都进行的一种算法 对于位置的回归而言,使用全连接层获得结果的4个输出,使用欧式距离计算损失值 对图像物体进行卷积,对卷积后的特征图分开进行计算,一条通路计算回归,一条通路计算分类 目标检测的实际操作步骤: 第一步:下载…
一.简单介绍 接上一篇[Android实战]----基于Retrofit实现多图片/文件.图文上传中曾说非常想搞明确为什么Retrofit那么屌. 近期也看了一些其源代码分析的文章以及亲自查看了源代码,发现其对Java网络编程及HTTP权威指南有了一个非常好的诠释.一直以来.都信奉一个原则.在这个新技术日新月异的时代.怎样在Java界立足.凭借的就两点: 1.基本功.包含:Java基本知识,(Java编程思想.Effective Java).Java进阶(Java虚拟机.Java设计模式).网络…
目录 ImageNet LeNet-5 LeNet-5 Demo AlexNet VGG 1*1 Convolution GoogLeNet Stack more layers? ImageNet LeNet-5 LeNet-5 Demo AlexNet VGG 1*1 Convolution GoogLeNet 把不同的核得到的结果进行合并 Stack more layers? 层数高,训练困难,无法找到最优解…
1.AlexNet是2012年最早的第一代神经网络,整个神经网络的构架是8层的网络结构.网络刚开始使用11*11获得较大的感受野,随后使用5*5和3*3做特征的提取,最后使用3个全连接层做得分值得运算,使用的是softmax分类器 2. VGG-net,网络的特点是全部使用3*3的卷积,通常有两个版本一个是16-VGG和19-VGG,每一进行完一次maxpool,都进行一次维度的提升,为了减少由于降维压缩而导致的信息损失.最后使用3个全连接层进行得分值得预测,使用的是softmax计算损失值…
http://www.mooc.ai/course/353/learn?lessonid=2289&groupId=0#lesson/2289 1.AlexNet, VGGNet, GoogleNet, ResNet https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html 1.1 AlexNet: 图像输入224*224*3.11*11滤波…