论文地址:https://arxiv.org/abs/1901.02970    github链接:https://github.com/hughw19/NOCS_CVPR2019 类别级6D物体位姿和尺寸估计的标准化物体坐标空间 简介 本文的目标是估计RGB-D图像中从未见过的物体实例的6D位姿和尺寸.与“实例级”6D位姿估计任务相反,作者假设在训练或测试期间没有精确的CAD模型可用.为了处理给定类别中不同的和从未见过的物体实例,作者引入了标准化物体坐标空间(简称NOCS),即同一个类别中的所…
目标检测20年综述(2019) 摘要 Abstract 该综述涵盖了400篇目标检测文章,时间跨度将近四分之一世纪.包括目标检测历史上的里程碑检测器.数据集.衡量指标.基本搭建模块.加速技术,最近的sota检测模型.还引入了一些重要的目标检测应用,比如行人检测.人脸检测.文本检测等.对这些技术以及挑战做出深度的解析. 1. Introduction 目标检测的其中一个基本任务:什么物体?在什么位置? 目标检测是计算机图像任务的基础,比如实例分割.图像翻译.目标追踪. 从应用层面来看,目标检测又被…
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object Detection进展缓慢,在DPM之后没有大的进展,直到CVPR2014,RBG大神(Ross Girshick)把当时爆火的CNN结合到Detection中,将PASCAL VOC上的准确率提高到53.7%,本文为你解读RBG的CVPR2014 paper: Rich feature hierar…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做detection可以从这篇文章去读更多不同类型的文章. 论文概述   卷积网络具有较好的平移不变性,但是对尺度不变性有较差的泛化能力,现在网络具有的一定尺度不变性.平移不变性往往是通过网络很大的capacity来"死记硬背",小目标物体难有效的检测出来,主要原因有:1.物体尺度变化很大,…
SAC-IA是基于RANSAC算法的对齐算法 通过降采样提高法向计算.FPFH特征的计算 最后通过SAC-IA计算得到对齐的旋转和平移 #include <Eigen/Core> #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/common/time.h> #include <pcl/console/print.h> #include <pcl/…
简介         本文作者提出新的框架(MTTM),使用模板匹配来完成多个任务,从深度图的模板上找到目标物体,通过比较模板特征图与场景特征图来预测分割mask和模板与检测物体之间的位姿变换.作者提出的特征网络通过模板与剪裁特征的对比来计算分割mask,预测位姿.通过实验表明尽管只使用深度图,但是效果很好. 论文针对生活中见到的物体,但是数据集或者CAD模型并不能覆盖所有物体,这样就需要额外的训练时间和新物体的样本图像来重新训练.而基于CNN的局部或全局描述符使用合成渲染图像和少量的真实图像训…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…