multi lstm attention时序之间,inputs维度是1024,加上attention之后维度是2018,输出1024,时序之间下次再转成2048的inputs 但是如果使用multi lstm的话inputs维度是1024,加上attention之后维度是2018,输出1024,这个时候直接循环进入下一个lstm,不会加入attention,会导致input是1024,使用上一个cell的参数的话报错…
https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,…
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域转移到另一个区域.这么一个一个的区域,就是定义的part,或者说是 glimpse.然后将这些区域的信息结合起来用于整体的判断和感受. 站在某个底层的角度,物体的显著性已经将这个物体研究的足够透彻.本文就是从这些东西…
在此前的两篇博客中所介绍的两个论文,分别介绍了encoder-decoder框架以及引入attention之后在Image Caption任务上的应用. 这篇博客所介绍的文章所考虑的是生成caption时的与视觉信息无关的词的问题,如"the"."of"这些词其实和图片内容是没什么关系的:而且,有些貌似需要视觉特征来生成的词,其实也可以直接通过语言模型来预测出来,例如"taking on a cell"后生成"phone".…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
Pan He_ICCV2017_Single Shot Text Detector With Regional Attention 作者和代码 caffe代码 关键词 文字检测.多方向.SSD.$$xywh\theta$$ .one-stage.开源 方法亮点 Attention机制强化文字特征: Text Attentional Module 引入Inception来增强detector对文字大小的鲁棒性:Hierarchical Inception Module(HIM) 方法概述 本文方法…