首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
混淆矩阵、准确率、召回率、ROC曲线、AUC
】的更多相关文章
机器学习入门-混淆矩阵-准确度-召回率-F1score 1.itertools.product 2. confusion_matrix(test_y, pred_y)
1. itertools.product 进行数据的多种组合 intertools.product(range(0, 1), range(0, 1)) 组合的情况[0, 0], [0, 1], [1, 0], [1, 1] 2. confusion_matrix(test_y, pred_y) # 构造混淆矩阵 混淆矩阵是TP(正的预测成正的), FP(正的预测成负的), TN(负的预测成负的), FN(负的预测成正的) 从混淆矩阵中,我们可以很清楚的看出这个信息,这是一个信用欺诈的案例,…
准确率,召回率,F值,ROC,AUC
度量表 1.准确率 (presion) p=TPTP+FP 理解为你预测对的正例数占你预测正例总量的比率,假设实际有90个正例,10个负例,你预测80(75+,5-)个正例,20(15+,5-)个负例 实际上你的准确率为75/80=0.9375,但这个评价指标有什么问题呢,想想就知道,这里你并没有用到实际的正例数,那么仅仅靠你猜中的正例作为分母,你并不知道实际的正例有多少,你看召回率为75/90=0.83,就是说你的猜测局限于预测范围 2.召回率 (recall)r=TPTP+FN…
一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混.还有的朋友面试之前背下来了,但是一紧张大脑一片空白全忘了,导致回答的很差. 我在之前的面试过程中也遇到过类似的问题,我的面试经验是:一般笔试题遇到选择题基本都会考这个率,那个率,或者给一个场景让…
信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC
原文地址:http://blog.csdn.net/pkueecser/article/details/8229166 在信息检索.分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总. 准确率.召回率.F1 信息检索.分类.识别.翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式: 召回率(Recall) = 系统检索到的相关文件 /…
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure
yu Code 15 Comments 机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure.(注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Collection,在都找到的情况下,排在第三名还是第四名损失…
准确率P 召回率R
Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:True Positive:本来是正样例,分类成正样例. True Negative:本来是负样例,分类成负样例. 表示分类错误:False Positive :本来是负样例,分类成正样例,通常叫误报. False Negative:本来是正样例,分类成负样例,通常叫漏报. P=TP/TP+FP R=TP…
混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…
二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
[机器学习] 性能评估指标(精确率、召回率、ROC、AUC)
混淆矩阵 介绍这些概念之前先来介绍一个概念:混淆矩阵(confusion matrix).对于 k 元分类,其实它就是一个k x k的表格,用来记录分类器的预测结果.对于常见的二元分类,它的混淆矩阵是 2x2 的. 假设要对 15 个人预测是否患病,使用 1 表示患病,使用 0 表示正常.预测结果如下: 预测值: 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 真实值: 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 将上面的预测结果转为混淆矩阵,如下: 上图展示了一个二…
ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)
欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 统计项目联系QQ:231469242 用条件概率理解混合矩阵容易得多 sensitivity:真阳性…