Ref: http://scikit-learn.org/stable/modules/lda_qda.html Ref: http://bluewhale.cc/2016-04-10/linear-discriminant-analysis.html Ref: http://blog.csdn.net/lizhe_dashuju/article/details/50329663 [该系列,作者很用心,讲得很通透] 线性判别分析(Linear Discriminant Analysis)简称LD…
2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component analysis (PCA) 4.4. Unsupervised dimensionality reduction 4.4.1. PCA: principal component analysis PCA+ICA 解混过程:https://www.zhihu.com/question/28845451…
论文题目:<Nonlinear Dimensionality Reduction by Locally Linear Embedding > 发表时间:Science  2000 论文地址:Download 简介 局部线性嵌入(Locally Linear Embedding,简称LLE)重要的降维方法. 传统的 PCA,LDA 等方法是关注样本方差的降维方法,LLE 关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,所以广泛用于图像图像识别,高维数据可视化等领域.…
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:三十五(用NN实现数据降维练习) Deep learning:三十四(用NN实现数据的降维) Deep learning:三十三(ICA模型) Deep learning:三十二(基础知识_3) Deep learning:三十一(数据预处理练习) Deep learning:三十(关于数据预处理的相关技巧) Deep…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
At some fundamental level, no one understands machine learning. It isn’t a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortunately, an innate human handicap interferes with us understanding these si…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高…
many Machine Learning problems involve thousands or even millions of features for each training instance. not only does this make training extremely slow,it can also make it much harder to find a good solution. this problem is often referred to as th…
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml  (一)K-means聚类算法 Input data:未标记的数据集,类别数K: 算法流程: 首先随机选择K个点,作为初始聚类中心(cluster centroids): 计算数据集中每个数据与…