深度学习之 rnn 台词生成】的更多相关文章

深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding="utf-8") as f: data = f.read() return data text = load_data('./moes_tavern_lines.txt')[81:] train_count = int(len(text) * 0.6) val_count = int(l…
如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站. 项目链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras 在未来三年内,深度学习将改变前端开发.它将会加快原型设计速度,拉低开发软件的门槛. Tony Beltramelli 在去年发布了论文<pix2code:…
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分类视频分类.3. CNN特征提取用于对话问答图片问答.还有很多领域,比如根据面目表情判断情感,用于遥感地图的标注,用于生物医学的图像解析,用于安全领域的防火实时监控等.而且现阶段关于CNN+RNN的研究应用相关文章更加多样,效果越来越好,我们可以通过谷歌学术参阅这些文章,而且大部分可免费下载阅读,至…
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性. 传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端.例如,假设你希望对电影中的每个时间点的时间类型进行分类.传统的神经网络应该很难来处理这个问题--使用电影中先前的事件推断后续的事件. RNN 解决了这个问题.…
1 这个是什么?        基于全卷积神经网络(FCN)的自动生成口红Python程序. 图1 FCN生成口红的效果(注:此两张人脸图来自人脸公开数据库LFW) 2 怎么使用了?        首先能从这个Github(https://github.com/Kalafinaian/ai_lips_makeup)中下载这个python项目.下载解压后你得到这样一个程序. 图2 口红Python程序        本项目的运行环境为Python3.6,需要的深度学习包tensorflow , 脸…
生成式对抗网络(GAN,generative adversarial network)由Goodfellow等人于2014年提出,它可以替代VAE来学习图像的潜在空间.它能够迫使生成图像与真实图像在统计上几乎无法区别,从而生成相当逼真的合成图像. 1.GAN是什么? 简单来说就是由两部分组成,生成器generator网络和判别器discriminator网络.一部分不断进化,使其对立部分也不断进化,实现共同进化的过程. 对GAN的一种直观理解是,想象我们想要试图生成一个二次元头像.一开始,我们并…
目录: 1.RNN 2.GRU 3.LSTM 一.RNN 1.RNN结构图如下所示: 其中: $a^{(t)} = \boldsymbol{W}h^{t-1} + \boldsymbol{W}_{e}x^{t} + \mathbf{b}$ $h^{t} = f(a^{t})$, f 是激励函数,sigmoid或者tanh $\hat{y}^{t} = Uh^{t}$ 2.RNN中的梯度消失与梯度膨胀 总损失是所有时间步的和:$E =  \sum_{t=1}^{T}E_{t}$,所以$\frac{…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…