Spark Streaming应用启动过程分析】的更多相关文章

本文为SparkStreaming源码剖析的第三篇,主要分析SparkStreaming启动过程. 在调用StreamingContext.start方法后,进入JobScheduler.start方法中,各子元素start方法的调用顺序如下: private var eventLoop : EventLoop[JobSchedulerEvent] = null val listenerBus = new StreamingListenerBus() private val jobGenerat…
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接收数据主要有两种办法,一种是基于Kafka high-level API实现的基于Receivers的接收方式,另一种是从Spark 1.3版本之后新增的无Receivers的方式.这两种方式的代码编写,性能表现都不相同.本文后续部分对这两种方式逐一进行分析. 一.基于Receiver的模式 这种模…
spark是迭代式的内存计算框架,具有很好的高可用性.sparkStreaming作为其模块之一,常被用于进行实时的流式计算.实时的流式处理系统必须是7*24运行的,同时可以从各种各样的系统错误中恢复. 在实际使用中,容错和数据无丢失显得尤为重要.最近看了官网和一些博文,整理了一下对Spark Streaming的容错和数据无丢失机制. checkPoint机制可保证其容错性.spark中的WAL用来改进恢复机制,保证数据的无丢失. checkPoint机制介绍 Spark Streaming需…
写在前面 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 本文主要介绍Spark Streaming基本概念.kafka集成.Offset管理 一.概述 Spark  Streaming顾名思义是spark的流式处理框架,是面向海量数据实现高吞吐量.高可用的分布式实时计算.关于spark的安装可以参考Spark入门.Spark Streaming并非像Storm那样是真正的流式计算,两者的处理模型在根本上有很大不同:Storm每次处理一条消息,更多详细信息可…
1.Spark Streaming 代码分析: 1.1 演示样例代码DEMO: 实时计算的WorldCount: import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.StreamingContext._ import org.apache.spark.storage.StorageLevel object NetworkWordCount { def mai…
一.部署应用程序 1.流程 1.有一个集群资源管理器,比如standalone模式下的Spark集群,Yarn模式下的Yarn集群等. 2.打包应用程序为一个jar包. 3.为executor配置充足的内存,因为Receiver接受到的数据,是要存储在Executor的内存中的,所以Executor必须配置足够的内存来保存接受到的数据.要注意的是, 如果你要执行窗口长度为10分钟的窗口操作,那么Executor的内存资源就必须足够保存10分钟内的数据,因此内存的资源要求是取决于你执行的操作的.…
本文讲解Spark流数据处理之Spark Streaming.本文的写作时值Spark 1.6.2发布之际,Spark 2.0预览版也已发布,Spark发展如此迅速,请随时关注Spark Streaming官方文档以了解最新信息. 文中对Spark Streaming的讲解主要使用到Scala语言,其他语言请参考官方文档,这点请知晓. 概述 Spark Streaming是Spark核心API的扩展,用于可伸缩.高吞吐量.可容错地处理在线流数据.Spark Streaming可以从很多数据源获取…
Apache Kafka 是一个可扩展,高性能,低延迟的平台,允许我们像消息系统一样读取和写入数据.我们可以很容易地在 Java 中使用 Kafka. Spark Streaming 是 Apache Spark 的一部分,是一个可扩展.高吞吐.容错的实时流处理引擎.虽然是使用 Scala 开发的,但是支持 Java API. Apache Cassandra 是分布式的 NoSQL 数据库. 准备 在进行下面文章介绍之前,我们需要先创建好 Kafka 的主题以及 Cassandra 的相关表,…
Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是JobScheduler的启动. StreamingContext启动 我们首先看下start方法的上半部分. 首先进行模式匹配,这是一个标准的条件判断,默认是INITIALIZED状态. 这里有三个关键部分: validate方法,会进行一些前置条件的判断.其中比较关键的是对DStreamGraph进…
Spark Streaming揭秘 Day23 启动关闭源码图解 今天主要分析一下SparkStreaming的启动和关闭过程. 从Demo程序出发,主要聚焦在两段代码: 启动代码: 关闭代码: 启动过程 StreamingContext是对SparkContext的封装,是个装饰器模式,相当于给SparkCore化妆. 其中最关键的参数是Batch Duration,Driver和Executor上的两个定时器都是基于这个参数. 在构造时创建的关键对象如下: DStreamGraph,DStr…