欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet 前言:这个系列文章将会从经典的卷积神经网络历史开始,然后逐个讲解卷积神经网络结构,代码实现和优化方向. THE HISTORY OF NEURAL NETWORKS http://dataconomy.com/2017/04/history-neural-networks/…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷积神经网络(CNN)已经对卷积神经网络进行了详细的描述,这里为了学习MXNet的库,所以对经典的神经网络进行实现~加深学习印象,并且为以后的使用打下基础.其中参考的为Gluon社区提供的学习资料~ 1.简单LeNet的实现 def LeNet(): """ 较早的卷积神经网络 :…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet 2012年,AlexKrizhevsky提出了深度卷积神经网络模型AlexNet,可以看作LeNet的一种更深更宽的版本.该模型包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积层后面连接了最大池化层,最后还有3个全连接层.它将LeNet的思想得到更广泛的传…
原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据需求量. 而卷积神经网络同样也引入了这样的先验知识:“空间共享”.下面就让我们以画面识别作为切入点,看看该先验知识是如何被引入到神经网络中的. 目录 视觉感知 画面识别是什么 识别结果取决于什么 图像表达 画面识别的输入 画面不变形 前馈神经网络做画面识别的不足 卷积神经网络做画面识别 局部连接 空…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16.4% 的错误率(需要设定 batch_size=1) models/alexnet_benchmark.py at master · tensorflow/models · GitHub,为一个 AlexNet 的测试基准程序. 0. 模型拓扑 在 main 函数中,不是使用的 ImageNet 中…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构. 目前先梳理下用于图像分类的卷积神经网络 LeNet AlexNet VGG GoogLeNet ResNet 本文是关于卷积神经网络的开山之作LeNet的,之前想着论文较早,一直没有细读,仔细看了一遍收获满满啊. 本文有以下内容: LeNet 网络结构 LeNet 论文 LeNet keras实…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet 项目简介 1994 年深度学习三巨头之一的 Yan LeCun 提出了 LeNet 神经网络,这是最早的卷积神经网络.1998 年 Yan LeCun 在论文 "Gradient-Based Learning Applied to Document Recognition" 中将这种卷积神经网络命名为 "LeNet-5".…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
1. 简介 VGGNet 是牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发的深度卷积神经网络,其主要探索了卷积神经网络的深度与网络性能间的关系. 2. 模型拓扑 16-19层深的卷积神经网络: VGGNet 论文中全部使用了 3×3 的卷积核和 2×2的池化核, 反复堆叠 3×3 的小型卷积核和 2×2 的最大池化层: 3. VGGNet-16 主要分为 6 部分, 前五部分为卷积网络: 最后一段是全连接网络:…
一.网络结构 AlexNet由5层卷积层和3层全连接层组成. 论文中是把网络放在两个GPU上进行,为了方便我们仅考虑一个GPU的情况. 上图中的输入是224×224224×224,不过经过计算(224−11)/4=54.75(224−11)/4=54.75并不是论文中的55×5555×55,而使用227×227227×227作为输入, 卷积层C1:处理流程为:卷积.ReLU.LRN.池化. 卷积:输入为227x227x3,使用96个11x11x3的卷积核,步长为4x4,得到FeatureMap为…
Lecture 5 CNN 课堂笔记参见:https://zhuanlan.zhihu.com/p/22038289?refer=intelligentunit 不错的总结笔记:https://blog.csdn.net/sugar_girl/article/details/79108709 1.卷积核步长公式:(N-F+2*padding)/stride+1=new_N N:原图形宽,F:filter宽,padding:填充宽度 2.卷积核参数公式:5*5*3的10个filter:5*5*3+…
Google Inception Net 首次出现在 ILSVRC 2014 的比赛中(和 VGGNet 同年),就以较大优势拔得头筹.那届比赛中的 Inception Net 一般被称为 Inception V1(version 1),其最大的优势在于控制 了参数量(也就控制了计算量)的同时,仍然能够获得非常好的分类性能 -- top-5 错误率 6.67%. Inception V1 降低餐数量的目的在于以下两点: 参数越多,模型越庞大,需要提供模型学习的数据量也就越大,而当前高质量的数据非…
经典卷积神经网络的结构一般满足如下表达式: 输出层 -> (卷积层+ -> 池化层?)+  -> 全连接层+ 上述公式中,“+”表示一个或者多个,“?”表示一个或者零个,如“卷积层+”表示一个或者多个卷积层,“池化层?”表示一个或者零个池化层.“->”表示 forward 方向. 下面将分别介绍 LeNet-5.AlexNet 和 VGG-16 结构. 1. LeNet-5(modern) 图 1  LeNet-5 1.1 LeNet-5 结构: 输入层 图片大小为 32×32×1…
[附上个人git完整代码地址:https://github.com/Liuyubao/Tensorflow-CNN] [如有疑问,更进一步交流请留言或联系微信:523331232] Reference 本文主要参考以下链接: Google<Tensorflow实战> http://neuralnetworksanddeeplearning.com/chap6.html http://cs231n.github.io/convolutional-networks/ https://blog.cs…
介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络. LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果.这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知. net = nn.Sequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, str…
网上关于卷积神经网络的相关知识以及数不胜数,所以本文在学习了前人的博客和知乎,在别人博客的基础上整理的知识点,便于自己理解,以后复习也可以常看看,但是如果侵犯到哪位大神的权利,请联系小编,谢谢.好了下面言归正传: 在深度学习领域中,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别,视频识别,语音识别领域取得了巨大的成功,正是由于这些成功,能促成了当前深度学习的大热.与此相对应的,在深度学习研究领域,最热门的是AutoEncoder.RBM.DBN等产生式网…
前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! TensorFlow 从入门到精通系列教程: http://www.tensorflownews.com/series/tensorflow-tutorial/ 卷积层简单封装 # 池化操作 def conv2d(x, W, b, strides=1): # Conv2D wrapper, with bias and relu activation x = tf.…
摘要:LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一.可以说,LeNet-5就相当于编程语言入门中的“Hello world!”. 华为的昇腾训练芯片一直是大家所期待的,目前已经开始提供公测,如何在昇腾训练芯片上运行一个训练任务,这是目前很多人都在采坑过程中,所以我写了一篇指导文章,附带上所有相关源代码.注意,本文并没有包含环境的安装,请查看另外相关文档.…
深度学习 Introducing convolutional networks:卷积神经网络介绍 卷积神经网络中有三个基本的概念:局部感受野(local receptive fields), 共享权重( shared weights), 池化( pooling). 与前面的神经网络不同,在这里我们用下图中的矩阵来表示输入神经元. 在cnn中,输入层的一个区域(例如,5 * 5)对应下一层隐含层中的一个神经元,这个区域就是一个局部感受野.如下图所示: 通过在输入矩阵中滑动局部感受野来对应隐含层中的…
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/248 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 ShowMeAI为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learn…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool1:14x14x6 卷积核:5x5,stride=1 得到Conv2:10x10x16 池化层Pool2:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool2:5x5x16 然后将Pool2展开,得到长度为400的向量 经过第一个全连接层,…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
目录视图 摘要视图 订阅 [置顶] [卷积神经网络-进化史]从LeNet到AlexNet 标签: cnn 卷积神经网络 深度学习 2016年05月17日 23:20:3046038人阅读 评论(4) 收藏 举报  分类: [机器学习&深度学习](15)  版权声明:如需转载,请附上本文链接.作者主页:http://blog.csdn.net/cyh_24 https://blog.csdn.net/cyh24/article/details/51440344   目录(?)[+]   [卷积神经…