如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列". 例子:1.1.2.3.5.8.13.21.34.-- 解法1: 100以内的斐波那契数列 x=1 y=1 print(x,end=" ") print(y,end=" ") while(True)…
so eary! 1 a,b = 0, 1 2 while b<100: 3 print (b), 4 a, b = b, a+b 本文转载自:python黑洞网 原文链接:http://www.pythonheidong.com/blog/article/9/…
a,b = 0, 1 while b<100: print (b), a, b = b, a+b…
python练习:斐波那契数列的递归实现 重难点:递归的是实现 def fib(n): if n==0 or n==1: return 1 else: return fib(n-1)+fib(n-2) def testFib(n): for i in range(n+1): print('fib of',i,'=',fib(i)) print(testFib(6)) python练习:使用上述程序计算fib(5),那么需要计算多少次fib(2)的值? 重难点:全局变量的定义和使用 i=0#定义一…
斐波纳契数列通常做法是用递归实现,当然还有其它的方法.这里现学现卖,用PHP的迭代器来实现一个斐波纳契数列,几乎没有什么难度,只是把类里的next()方法重写了一次.注释已经写到代码中,也是相当好理解的. /** * @author 简明现代魔法 http://www.nowamagic.net */ class Fibonacci implements Iterator { private $previous = 1; private $current = 0; private $key =…
#!/usr/bin/env python # -*- coding: utf-8 -*- # 斐波那契数列 def fibonacci_sequence(num): aa = 0 b = 1 li = list() li.append(aa) li.append(b) for i in range(1, num): aa, b = b, a + b li.append(b) return li if __name__ == '__main__': a = fibonacci_sequence(…
斐波纳契数列通常做法是用递归实现,当然还有其它的方法.这里现学现卖,用PHP的迭代器来实现一个斐波纳契数列,几乎没有什么难度,只是把类里的next()方法重写了一次.注释已经写到代码中,也是相当好理解的. view source   print? 01 /** 02 * @author 简明现代魔法 http://www.nowamagic.net 03 */ 04 class Fibonacci implements Iterator { 05 private $previous = 1; 0…
描述 一个斐波那契序列,F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) (n>=2),根据n的值,计算斐波那契数F(n),其中0≤n≤1000. 输入 输入数据的第一行为测试用例的个数t,接下来为t行,每行为一个整数n(0≤n≤1000). 输出 输出每个测试用例的斐波那契数F(n). 样例输入 2 1 2 样例输出 1 1 list=[] for i in range(1001): if i==0: list.append(0) elif i==1 or…
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理.于是,fact(n)用递归的方式写出来就是: def fact(…
1.斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(3)=2,F(n)=F(n-1)+F(n-2)(n>=4,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学…