spark系列-7、spark调优】的更多相关文章

Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调优 Spark面试题(七)--Spark程序开发调优 Spark面试题(八)--Spark的Shuffle配置调优 1.Shuffle优化配置 -spark.shuffle.file.buffer 默认值:32k 参数说明:该参数用于设置shuffle write task的BufferedOutp…
[原创 Hadoop&Spark 动手实践 7]Spark 应用经验.调优与动手实践 目标: 1. 了解Spark 应用经验与调优的理论与方法,如果遇到Spark调优的事情,有理论思考框架. 2. 把调优的过程,进行动手实践,完成一些调优的优化过程,加深理解. 3. 做一个完整的调优的案例,再次加深自己对Spark调优的理解.…
16年的时候花了一些时间整理了一些关于jvm的介绍文章,到现在回顾起来还是一些还没有补充全面,其中就包括如何利用工具来监控调优前后的性能变化.工具做为图形化界面来展示更能直观的发现问题,另一方面一些耗费性能的分析(dump文件分析)一般也不会在生产直接分析,往往dump下来的文件达1G左右,人工分析效率较低,因此利用工具来分析jvm相关问题,长长可以到达事半功倍的效果来. jvm监控分析工具一般分为两类,一种是jdk自带的工具,一种是第三方的分析工具.jdk自带工具一般在jdk bin目录下面,…
Spark-性能调优-系列文章 Spark Master at spark://node-01:7077 scala java8_百度搜索 (1 封私信)如何评价Linkedin决定逐渐减少Scala转而使用Java8的决定? - 知乎 为什么Java 8也不能干掉Scala? - 大数据技术参考_大数据技术文献_大数据趋势分析 SPARK_WORKER_CORES 超过_百度搜索 spark 调优经验(续二) | IT瘾 spark调优经验(待续) | IT瘾 Spark&Spark性能调优实…
不多说,直接上干货! 性能调优 Caching Data In Memory Spark SQL可以通过调用sqlContext.cacheTable("tableName") 或者dataFrame.cache(),将表用一种柱状格式( an in­memory columnar format)缓存至内存中.然后Spark SQL在执行查询任务时,只需扫描必需的列,从而以减少扫描数据量.提高性能. 通过缓存数据,Spark SQL还可以自动调节压缩,从而达到最小化内存使用率和降低GC…
Sparkstreaming-性能调优 Spark Master at spark://node-01:7077 sparkstreaming 线程 数量_百度搜索 streaming中partition里用线程池异步优化 - 曾晓森的博客 - CSDN博客 第116课: Spark Streaming性能优化:如何在毫秒内处理处理大吞吐量的和数据波动比较大 的程序 - CSDN博客 Spark(十二)--性能调优篇 - 蒋源德 - 博客园 转:spark通过合理设置spark.default.…
spark streaming 调优的几个角度: 高效地利用集群资源减少批数据的处理时间 设置正确的批容量(size),使数据的处理速度能够赶上数据的接收速度 内存调优 Spark SQL 可以通过调用 sqlContext.cacheTable("tableName")方法来缓存使用柱状格式的表.…
park submit参数介绍 你可以通过spark-submit --help或者spark-shell --help来查看这些参数.   使用格式:  ./bin/spark-submit \   --class <main-class> \   --master <master-url> \   --deploy-mode <deploy-mode> \   --conf <key>=<value> \   ... # other opti…
1.平常的资源使用情况 2.官网 3.资源参数调优 cores memory JVM 4.具体参数 可以在--conf参数中给定资源配置相关信息(配置的一般是JVM的一些垃圾回收机制) --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). 给定driver运行的时候申请的内存,默认是1G --executor-memory MEM Memory per executor (e.g. 1000M, 2G)…
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 1.1数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时.这种情况很常见. 原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异…