知识点:                                                                                               分支语句 实验过程中遇到的问题及解决方法:  没什么问题 实验心得体会: 要注意数学表达式转换成计算机语言:…
知识点 数据类型,运算符与表达式: 程序结构:顺序,选择,循环 问题 各种结构,单词意思 心得体会 抄程序是最笨的方法但我认为它是进步最快的方法,抄程序是积累经验的时候,而做项目才是真正把所学为所用的时候,可以说只有你做一个大点的项目出来才能真正是说明你学到了东西,你会用所学的东西,要不然就算你学的再多,不会用也没用…
知识点: 分支语句,四则运算,( ̄y▽ ̄)~* 实验过程中遇到的问题及解决方法: 忘记换行,忘记代码,输入法切换(´∀`*) 暂时还得照书写,*★,°*:.☆\( ̄▽ ̄)/$:*.°★* 实验心得体会: 做作业的时候要在一个安静的环境, 让自己能全身心的投入, 以便于自少犯不必要的错误, 私はすべて私に気に入らない物を壊すことができて.あなたを含む. 神はこの腐った世界を救うことができないならば.それは私を壊すことを破壊させて.ついでにこの中に使う神を殺して.…
编程什么的最讨厌了,总是忘记一些乱七八糟的,看起来并没有什么乱用的,比如(::“<>{}, 还有交作业的时候总是忽略大小写<(▰˘◡˘▰)> 马马虎虎莫名其妙就错了,其实大小写并没有什么乱用(我认为是这样)(/"≡ _ ≡)/~┴┴ 现在很多还得靠书(/"≡ _ ≡)/~┴┴ 得自己背下来代码才行啊(/"≡ _ ≡)/~┴┴ 还有暂时还没想到,以后再补充吧( ̄y▽ ̄)~*…
朱念齐,学号160809404(这些其实并没有什么乱用)唉( ̄y▽ ̄)~* 正文 鬼族后裔,原是露格尼卡王国的子民,在王立比布利亚学园任职魔法使拥有分别为: 拥有书库: 书库:傲慢(Superbia),主题:支配(Impel) 书库:暴食(Gula),主题:信仰(Fides) 书库:色欲(Luxuria),主题:生命(Abies) 书库:怠惰(Acedia),主题:停滞(Stagnant) 开始时持有<阿斯提尔的手抄本>(アスティルの写本,自称为空)和<伊利亚斯的断章>(イーリアス…
樱花满地集于我心,楪舞纷飞祈愿相随 前言 太菜了,人手切掉两个题,我竟然一道都不会.. 改 T3 的时候整个人的心态都崩掉了,一部分原因可能是语文素养不高导致我看不懂题解. 另一部分可能就是系太不太好,受不了打击...(又菜又玩不起 后来稍微又看了一下题才发现自己 T3 少看了 w 互不相同这个条件,难怪感觉题解越想越不对.. T1 茅山道术 解题思路 动态规划 设 \(f_i\) 表示前 \(i\) 个的方案数,状态可以由 \(i-1\) 或者 \(i\) 位置的这个颜色的上一个出现位置转移过…
1. ADFA-LD数据集简介 ADFA-LD数据集是澳大利亚国防学院对外发布的一套主机级入侵检测数据集合,包括Linux和Windows,是一个包含了入侵事件的系统调用syscall序列的数据集(以单个进程,一段时间窗口内的systemcall api为一组) ADFA-LD数据已经将各类系统调用完成了特征化,并针对攻击类型进行了标注,各种攻击类型见下表 攻击类型 数据量 标注类型 Trainning 833 normal Validation 4373 normal Hydra-FTP 16…
把数据集分为三部分,分别为:训练集(train set),验证集(validation set)和测试集(test set). 具体比例有各种说法.待补充 测试集是为了测模型泛化能力,不能在训练的时候使用测试集数据. [转载] 在NG的ML课程中和西瓜书中都有提到:最佳的数据分类情况是把数据集分为三部分,分别为:训练集(train set),验证集(validation set)和测试集(test set).那么,验证集和测试集有什么区别呢? 实际上,两者的主要区别是:验证集用于进一步确定模型中…
假设我们要在10 个不同次数的二项式模型之间进行选择: 显然越高次数的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况,我们应该选择一个更能适应一般情况的模型.我们需要使用交叉验证集来帮助选择模型.即:使用60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用20%的数据作为测试集. 模型选择的方法为:1. 使用训练集训练出10 个模型2. 用10 个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)3. 选取代价函数值最小的模型4. 用步骤3 中…
怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也就是训练集.验证集和测试集.本节将会介绍这些内容的含义,以及如何使用它们进行模型选择.在前面的学习中,我们已经多次接触到过拟合现象.在过拟合的情况中学习算法在适用于训练集时表现非常完美,但这并不代表此时的假设也很完美(如下图). 更普遍地说,过拟合是训练集误差通常不能正确预测出该假设是否能很好地拟合…
TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和自然语言处理等场景下都有丰富的应用.最近流行的Keras框架底层默认使用TensorFlow,著名的斯坦福CS231n课程使用TensorFlo…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
讲授logistic回归的基本思想,预测算法,训练算法,softmax回归,线性支持向量机,实际应用 大纲: 再论线性模型logistic回归的基本思想预测函数训练目标函数梯度下降法求解另一种版本的对数似然函数L2正则化logistic回归L1正则化logistic回归liblinear简介实验环节softmax回归实际应用 线性模型分两类,一类是逻辑斯蒂回归,另一种是线性的SVM. liblinear和libSVM是兄弟库,同一波人开发的. logistic本来是二分类器,扩展一下成为soft…
Time Limit: 1000MSMemory Limit: 10000K Total Submissions: 32909Accepted: 10158 Description The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, t…
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数: 默认是把数据集的75%作为训练集,把数据集的25%作为测试集. 2.交叉验证(一般取十折交叉验证:10-fold cross validation) k个子集,每个子集均做一次测试集,其余的作为训练集. 交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果. 3…
训练集(train set) 验证集(validation set) 测试集(test set). http://blog.sina.com.cn/s/blog_4d2f6cf201000cjx.html 一般需要将样本分成独立的三部分训练集(train set),验证集(validation set)和测试集(test set).其中训练集用来估计模型,验证集用来确定网络结构或者控制模型复杂程度的参数,而测试集则检验最终选择最优的模型的性能如何.一个典型的划分是训练集占总样本的50%,而其它各…
  机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源 相关主题   在信息时代,公司和个人的成功越来越依赖于迅速有效地将大量数据转化为可操作的信息.无论是每天处理数以千计的个人电子邮件消息,还是从海量博客文章中推测用户的意图,都需要使用一些工具来组织和增强数据. 这其中就蕴含着 机器学习领域以及本文章所介绍项目的前景:Apache Mahout(见 参考资料). 机器学习是人工智能的一个分支,它涉及通过一些技…
训练方式::https://blog.csdn.net/xiao_lxl/article/details/79106837 caffe-ssd训练自己的数据集 https://blog.csdn.net/lukaslong/article/details/81509855 错误:: SSD(Single Shot MultiBox Detector):create_list.sh io.cpp:187 Could not open or find file https://blog.csdn.n…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [Python NLP]Python 自然语言处理工具小结(2) [Python NLP]Python NLTK 走进大秦帝国(3) [Python NLP]Python NLTK获取文本语料和词汇资源(4) [Python NLP]Python NLTK处理原始文本(5) 1 Python 的几个自…
软件安全课程的一次实验,整理之后发出来共享. 什么是KD树 要说KD树,我们得先说一下什么是KNN算法. KNN是k-NearestNeighbor的简称,原理很简单:当你有一堆已经标注好的数据时,你知道哪些是正类,哪些是负类.当新拿到一个没有标注的数据时,你想知道它是哪一类的.只要找到它的邻居(离它距离短)的点是什么类别的,所谓近朱者赤近墨者黑,KNN就是采用了类似的方法. 如上图,当有新的点不知道是哪一类时,只要看看离它最近的几个点是什么类别,我们就判断它是什么类别. 举个例子:我们将k取3…
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序.该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型.同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型.该工具箱具有设计.训练.可视化与仿真神经网络的功能.基于该工具箱可以进行数据拟合.模式识别.分类和时间序列预测及其动态系统的建模和控制.…
当做重要决定时,我们可能会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题也是这样,这就是元算法(meta-algorithm)背后的思路. 元算法是对其他算法进行组合的一种方式,其中最流行的一种算法就是AdaBoost算法.某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 集成学习或者元算法的一般结构是:先产生一组"个体学习器",再用某种策略将他们结合起来.个体学习器通常是由一个现有的学习算法从训练数据产生. 根据个体学习器的生…
目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念.当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理.神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了"Python机器学习库",不过总感觉缺少点什么.最近流行一个词,全栈工…
PS:文章主要转载自CSDN大神hguisu的文章"机器学习排序":          http://blog.csdn.net/hguisu/article/details/7989489      最近需要完成课程作业——分布式排序学习系统.它是在M/R.Storm或Spark架构上搭建分布式系统,并使用学习排序Pointwise.Pairwise和Listwise三大类算法实现对微软数据集(Microsoft Learning to Rank Datasets)进行学习排序,这篇…
转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github GitHub 上 57 款最流行的开源深度学习项目 本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名).最后更新:2016.08.09 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFl…
http://blog.csdn.net/jj12345jj198999/article/details/8951120 coursera上 web intelligence and big data 终于布置了HW7,这一次的要求是对一系列DNA序列进行预测,具体说明如下: Data Analytics Assignment (for HW7) Predict the Ethnicity of Individuals from their Genes   ===================…