jieba gensim 相似度实现】的更多相关文章

博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html 简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥&quo…
先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到版权问题,此附件没有图片和音乐.请参考链接,手动采集一下! 请参考链接: https://www.cnblogs.com/xiao987334176/p/9647993.html#autoid-3-4-0 一.玩具与玩具之间的对话 app消息提醒 之前实现了App发送语音消息给web端玩具,web端…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim:进行语料库制作和算法训练 结巴(jieba)分词 在自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤.用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库.结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语…
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用.单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高.基于此,单位觉得开发一款可以达到实用的智能查重系统.遍及网络文献,终未得到有价值的参考资料,这个也是自然.首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发…
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
Flask我们已经学习很多基础知识了,现在有一个问题 我们现在有一个 Flask 程序其中有3个路由和视图函数,如下: from flask import Flask app = Flask(__name__) # type:Flask @app.route("/login") def login(): return "Login" @app.route("/index") def index(): return "Index"…
0. 写在前面 节后第一篇,疫情还没结束,黎明前的黑暗,中国加油,武汉加油,看了很多报道,发现只有中国人才会帮助中国人,谁说中国人一盘散沙?也许是年龄大了,看到全国各地的医务人员源源不断的告别家人去支援湖北,看到医务人员.肺炎病人的故事,总会忍不住落泪,中国加油,中国人加油! 1. 场景描述 背景不写了,只谈技术,做的是文本相似性统计,因需要从文本描述性信息中分析同类信息,以便后续重点关注,数据量比较大,大概20多万,人工效率低,需要算法来实现. 根据需求要从不同维度进行统计: (1)分组不分句…
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用.单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高.基于此,单位觉得开发一款可以达到实用的智能查重系统.遍及网络文献,终未得到有价值的参考资料,这个也是自然.首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发…
外部的标准镜像,肯定满足不了公司的实际要求咯~~ 所以,根据同事的需求,重新制作了这个包. 其中可用库为tensorflow,numpy, pandas,scikit-learn,jieba,gensim, opencv,requests以及与hdfs文件系统的互访. 因为公司不可以直接直外网,所以dockerfile里引入了http代理. 作个记录. 这里需要注意的细节是 1,apt-get upgrade之后,要重新导入http代理的环境变量,否则不生效的. 2,datatools为自己的w…
Numpy:科学计算 HOME:  http://www.numpy.org/ NumPy is the fundamental package for scientific computing with Python 科学计算库, Python的一种开源的数值计算扩展, Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库. Pandas:科学计算库,基于Numpy HOME:  http://pandas.pydata.org/ pandas i…
参考链接:https://blog.csdn.net/whzhcahzxh/article/details/17528261 demo1:结巴分词: # 构造分词库,格式如下: ''' [['楼下', '买', '水果', '这家', '店', '价格比', '店要', '高', '', '', '%', '价格', '太高', '老板', '说', '老板', '您好', '家', '水果', '很漂亮', '新鲜', '进货', '价格', '挺', '高', '我刚', '搬', '喜欢'…
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理. 具体API看官网:https://radimrehurek.com/gensim 中文分词 中文需要分词,英文就不需要了,分词用的 jieba . def segment(d…
一 . pypinyin from pypinyin import lazy_pinyin, TONE, TONE2, TONE3 word = '孙悟空' print(lazy_pinyin(word, style=TONE)) # ['sūn', 'wù', 'kōng'] print(lazy_pinyin(word, style=TONE2)) # ['su1n', 'wu4', 'ko1ng'] print(''.join(lazy_pinyin(word, style=TONE2))…
http://blog.csdn.net/chencheng126/article/details/50070021 参考于这个博主的博文. 原理 1.文本相似度计算的需求始于搜索引擎. 搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似度,从而把最相似的排在最前返回给用户. 2.主要使用的算法是tf-idf tf:term frequency 词频 idf:inverse document frequency 倒文档频率 主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其…
环境描述 Python环境:Python 3.6.1 系统版本:windows7 64bit 文件描述 一共有三个文件,分别是:file_01.txt.file_02.txt.file_03.txt file_01.txt文件内容: 我吃过糖之后,发现我的牙齿真的很疼 file_02.txt文件内容: 牙疼不是病疼起来要人命. file_03.txt文件内容: 我的肚子不舒服!与此同时,牙疼也让我接近崩溃 文本相似度分析步骤 打开并读取文档内容 对要进行分析的文档分词 格式化文档 计算词频(可以…
不废话直接代码吧 # 1.模块导入 import jieba import gensim from gensim import corpora from gensim import models from gensim import similarities # 2.制作问题库 # 2.制作问题库 l1 = ["你叫什么名字", "你的姓名是什么", "你的体重是多少", "你的年龄是多少"] # 问题库 # 3.对问题样本和…
一.jieba分词功能 1.主要模式 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 2.算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字…
六款中文分词软件介绍: https://blog.csdn.net/u010883226/article/details/80731583 里面有jieba, pyltp什么的.另外下面这个博客有不少NLP相关文章: 下面是这个人的博客和github主页介绍了不少NLP内容,可以好好看看 https://www.cnblogs.com/baiboy/ https://bainingchao.github.io/categories/ sklearn+gensim︱jieba分词.词袋doc2bo…
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性. 评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观. 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大. 这是从…
# -*- coding: utf-8 -*- import gensim # 导入模型 model = gensim.models.KeyedVectors.load_word2vec_format('vectors.bin', binary=True) # 得到两组词的相似度 list1 = [u'核能'] list2 = [u'电能'] list3 = [u'电力'] list_sim1 = model.n_similarity(list1, list2) print list_sim1…
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一些特殊名词,我从网上搜了一些,作为字典,加入到jieba里,以提高分词的准确性. 一.gensim中关于word2vec的参数说明 这一部分其他博客整理的比较清楚了,我也就不抄过来了.看这个链接: https://www.cnblogs.com/pinard/p/7278324.html 二.gensim训练…
参考代码 ChineseClean_demo1.py: # -*- coding:utf-8 -*- import xlrd import xlwt ''' python3.4 ''' # file 表示源文件名字,修改此处即可 file="./data/answer_detail_5_15307860968687.xls" dirs="./result" def read_excel(rows_numb,cols_numb): f = xlwt.Workbook(…
  本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代.   本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity).   首先,让我们来看一下,什么是词袋模型.我们以下面两个简单句子为例: sent1 = "I love sky, I love sea." sent2 = "I like running, I love reading."   通常,NL…
word2vec的基础知识介绍参考上一篇博客和列举的参考资料. 首先利用安装gensim模块,相关依赖如下,注意版本要一致: Python >= 2.7 (tested with versions 2.7, 3.5 and 3.6)    NumPy >= 1.11.3    SciPy >= 0.18.1    Six >= 1.5.0    smart_open >= 1.2.1 我们利用jieba分词对<射雕英雄传>进行分词,然后训练词向量,最后进行测试 #…
作为Python的一个库,gensim给了文本主题模型足够的方便,像他自己的介绍一样,topic modelling for humans 具体的tutorial可以参看他的官方网页,当然是全英文的,http://radimrehurek.com/gensim/tutorial.html 由于这个链接打开速度太慢太慢,我决定写个中文总结:(文章参考了52nlp的博客,参看http://www.52nlp.cn) 安装就不用说了,在ubuntu环境下,sudo easy_install gensi…
import gensimfrom gensim.models import word2vecimport loggingimport jiebaimport osimport numpy as np def cut_txt(old_file): import jieba global cut_file # 分词之后保存的文件名 cut_file = old_file + '_cut.txt' try: fi = open(old_file, 'r', encoding='utf-8') exc…