spark 变量使用 broadcast、accumulator】的更多相关文章

broadcast 官方文档描述: Broadcast a read-only variable to the cluster, returning a [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions. The variable will be sent to each cluster only once.   函数原型: def broadcast[T](value:…
概述 近期工作上忙死了--广播变量这一块事实上早就看过了,一直没有贴出来. 本文基于Spark 1.0源代码分析,主要探讨广播变量的初始化.创建.读取以及清除. 类关系 BroadcastManager类中包括一个BroadcastFactory对象的引用.大部分操作通过调用BroadcastFactory中的方法来实现. BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory.HttpBroadcastFactory.这两个子类实现了对H…
概述 最近工作上忙死了……广播变量这一块其实早就看过了,一直没有贴出来. 本文基于Spark 1.0源码分析,主要探讨广播变量的初始化.创建.读取以及清除. 类关系 BroadcastManager类中包含一个BroadcastFactory对象的引用.大部分操作通过调用BroadcastFactory中的方法来实现. BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory.HttpBroadcastFactory.这两个子类实现了对Htt…
1 对于并行处理,Apache Spark使用共享变量.当驱动程序将任务发送给集群上的执行者时,集群中的每个节点上都有一个共享变量的副本,这样就可以用于执行任务了. 2 两种支持得类型 (1)Broadcast 广播变量保存所有节点数据备份.该变量缓存在所有机器上,而不是在有任务的机器上发送.下面的代码块包含了PySpark的广播类的详细信息 from pyspark import SparkContext, SparkConf sc = SparkContext() words_new = s…
1. 自定义累加器 自定义累加器需要继承AccumulatorParam,实现addInPlace和zero方法. 例1:实现Long类型的累加器 object LongAccumulatorParam extends AccumulatorParam[Long]{ override def addInPlace(r1: Long, r2: Long) = { println(s"$r1\t$r2") r1 + r2 } override def zero(initialValue:…
Spark中的Broadcast处理 首先先来看一看broadcast的使用代码: val values = List[Int](1,2,3) val broadcastValues = sparkContext.broadcast(values) rdd.mapPartitions(iter => { broadcastValues.getValue.foreach(println) }) 在上面的代码中,首先生成了一个集合变量,把这个变量通过sparkContext的broadcast函数进…
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
共享变量工作原理 Spark一个非常重要的特性就是共享变量.   默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中.此时每个task只能操作自己的那份变量副本.如果多个task想要共享某个变量,那么这种方式是做不到的.   Spark为此提供了两种共享变量,一种是Broadcast Variable(广播变量),另一种是Accumulator(累加变量).Broadcast Variable会将使用到的变量,仅仅为每个节点拷贝一份,更大的用处是优…
转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator) 累加器用来对信息进行聚合,而广播变量用来高效分发较大的对象. 共享变量出现的原因: 通常在向 Spark 传递函数时,比如使用 map() 函数或者用 filter() 传条件时,可以使用驱动器程序中定义的变量,但是集群中运行的每个任务都会得到这些变量的一份新的副本…
Shared Variables Spark does provide two limited types of shared variables for two common usage patterns: broadcast variables and accumulators. Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than sh…