Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了对连续变量\(α={α^{(i,j)}}\)以及\(w\)的学习.(这里\(α\)可以理解成the encoding of the architecture). 之后就是迭代计算\(w\)和\(α\),这是一个双优化问题,具体处理细节参见3.Approximation Research Object…
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arxiv.org/pdf/1806.09055.pdf Code:https://github.com/quark0/darts 1. Motivation and Background:  前人的网络搜索方法,要么是基于 RL 的,要么是基于进化算法的,都是非常耗时的,最近的几个算法表示他们的计算时间…
Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation 2019-04-30 11:46:21 Paper:https://arxiv.org/pdf/1904.12760.pdf Code:https://github.com/chenxin061/pdarts 本文是 DARTS 的改善,关于 DARTS 的细节,可以参考其原文(代码,博文). 本文…
Summary 本文提出超越神经架构搜索(NAS)的高效神经架构搜索(ENAS),这是一种经济的自动化模型设计方法,通过强制所有子模型共享权重从而提升了NAS的效率,克服了NAS算力成本巨大且耗时的缺陷,GPU运算时间缩短了1000倍以上.在Penn Treebank数据集上,ENAS实现了55.8的测试困惑度:在CIFAR-10数据集上,其测试误差达到了2.89%,与NASNet不相上下(2.65%的测试误差) Research Objective 作者的研究目标 设计一种快速有效且耗费资源低…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.pdf Code (PyTorch version):https://github.com/chenxi116/PNASNet.pytorch…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model Selection,这篇文章会继续介绍后面的内容. 4. Model Generation 4.2 Hyperparameters optimization 4.2.1 Grid&Random Search 下图很直观地展示了网格搜索(grid search)和随机搜索(random search)的…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
P-DARTS 2019-ICCV-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation Tongji University && Huawei GitHub: 200+ stars Citation:49 Motivation Question: DARTS has to search the architecture in a shallow…