【cs231n】神经网络笔记笔记2】的更多相关文章

+ mu) * v # 位置更新变了形式 对于NAG(Nesterov's Accelerated Momentum)的来源和数学公式推导,我们推荐以下的拓展阅读: Yoshua Bengio的Advances in optimizing Recurrent Networks,Section 3.5. Ilya Sutskever's thesis (pdf)在section 7.2对于这个主题有更详尽的阐述. 学习率退火 在训练深度网络的时候,让学习率随着时间退火通常是有帮助的.可以这样理解:…
) # 对数据进行零中心化(重要) cov = np.dot(X.T, X) / X.shape[0] # 得到数据的协方差矩阵 数据协方差矩阵的第(i, j)个元素是数据第i个和第j个维度的协方差.具体来说,该矩阵的对角线上的元素是方差.还有,协方差矩阵是对称和半正定的.我们可以对数据协方差矩阵进行SVD(奇异值分解)运算. U,S,V = np.linalg.svd(cov) U的列是特征向量,S是装有奇异值的1维数组(因为cov是对称且半正定的,所以S中元素是特征值的平方).为了去除数据相…
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 Weight Initialization 交叉验证 Cross Validation 参数更新方法 Parameter Update SGD SGD+momentum Adagrad RMSprop Adam 改善过拟合 Overfiting 模型集成 Model ensemble 正则化 Reg…
神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:Optimization Note , 1) # 含3个数字的随机输入向量(3x1) h1 = f(np.dot(W1, x) + b1) # 计算第一个隐层的激活数据(4x1)…
目录 Introduction to Neural Networks BP Nerual Network Convolutional Neural Network Introduction to Neural Networks BP 梯度反向传播BackPropagation,是神经网络中的重要算法,主要思想是: 计算网络的输出与期望输出之间的误差 将误差从网络的输出层回传,沿着网络逐层传递,传递的是损失值相对当前层里参数的梯度 当每一层都接收到该层的参数梯度时,沿着梯度方向更新参数 用更新后的…
): W = np.random.randn(10, 3073) * 0.0001 # generate random parameters loss = L(X_train, Y_train, W) # get the loss over the entire training set if loss < bestloss: # keep track of the best solution bestloss = loss bestW = W print 'in attempt %d the…
本文记录官方note中比较新颖和有价值的观点(从反向传播开始) 一 反向传播 1 “反向传播是一个优美的局部过程.在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值,和2.其输出值关于输入值的局部梯度.门单元完成这两件事是完全独立的,它不需要知道计算线路中的其他细节.” 2 反向传播的编程中要学会分段计算,即在前向传播过程中把有用的中间变量缓存下来. 3 输入的大小对梯度有巨大影响,因此数据预处理很重要.例如乘法门会将大梯度分给小输入,小梯度分给大输入,因此当…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:image classification notes 这是一篇介绍性教程,面向非计算机视觉领域的同学.教程将向同学们介绍图像分类问题和数据驱动方法. 内容列表: 图像分类.数据驱动方法和流程 Nearest Neighbor分类器 k-Nearest Neighbor 验证集.交叉验证集和超参数调参…
这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中留下一个印象,知道什么是卷积神经网络,当然主要是学习Keras,顺便走一下CNN的过程. 2,深入学习卷积神经网络(CNN)的原理知识,这次是对CNN进行深入的学习,对其原理知识认真学习,明白了神经网络如何识别图像,知道了卷积如何运行,池化如何计算,常用的卷积神经网络都有哪些等等. 3,Tensor…