http://scikit-learn.org/stable/modules/feature_extraction.html 4.2节内容太多,因此将文本特征提取单独作为一块. 1.the bag of words representation 将raw data表示成长度固定的数字特征向量,scikit-learn提供了三个方式: tokenizing:给每个token(字.词.粒度自己把握)一个整数索引id counting:每一个token在每一个文档中出现的次数 normalizing:…
假设有一段文本:"I have a cat, his name is Huzihu. Huzihu is really cute and friendly. We are good friends." 那么怎么提取这段文本的特征呢? 一个简单的方法就是使用词袋模型(bag of words model).选定文本内一定的词放入词袋,统计词袋内所有词在文本中出现的次数(忽略语法和单词出现的顺序),将其用向量的形式表示出来. 词频统计可以用scikit-learn的CountVectori…
假设有一段文本:"I have a cat, his name is Huzihu. Huzihu is really cute and friendly. We are good friends." 那么怎么提取这段文本的特征呢? 一个简单的方法就是使用词袋模型(bag of words model).选定文本内一定的词放入词袋,统计词袋内所有词在文本中出现的次数(忽略语法和单词出现的顺序),将其用向量的形式表示出来. 词频统计可以用scikit-learn的CountVectori…
http://scikit-learn.org/stable/modules/feature_extraction.html 带病在网吧里. ..... 写.求支持. .. 1.首先澄清两个概念:特征提取和特征选择( Feature extraction is very different from Feature selection ). the former consists in transforming arbitrary data, such as text or images, in…
原文地址:https://realpython.com/blog/python/setting-up-sublime-text-3-for-full-stack-python-development/ 原文标题:Setting Up Sublime Text 3 for Full Stack Python Development 翻译:打造基于sublime text 3的全能Python开发环境 Sublime Text 3 (ST3) is lightweight, cross-platfo…