Euler猜想】的更多相关文章

这是从http://duodaa.com/blog/index.php/archives/538/截得图,以下是代码 package math; import java.math.BigDecimal; import java.util.function.BiConsumer; public class TestEuler { public static void main(String[] args) { boolean flg=true; for(long x=1;flg;x++){ for…
计算机上的每个字母都对应一个独特的编号,普遍接受的标准是ASCII(美国信息交换标准代码).例如,大写字母的A的ASCII码是65,星号(*)的ASCII码是42,而小写字母k的代码是107. 一种现代的加密方法是:输入一个文本文件,把其中的字节转化为对应的ASCII码,然后用从秘钥中获得的特定值和每个字节做异或运算.异或函数的一个好处是对密文使用同样的密钥就可以还原出明文,比如\(65\ XOR\ 42=107\),同时\(107\ XOR\ 42=65\). 如果密钥的长度和明文的长度一样长…
本题来自 Project Euler 第14题:https://projecteuler.net/problem=14 ''' Project Euler: Problem 14: Longest Collatz sequence The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…
The Euler functionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6018 Accepted Submission(s): 2539 Problem DescriptionThe Euler function phi is an important kind of function in number theory, (n)…
Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其和不是回文数,则重复上述步骤,一直到获得回文数为止.例如:68变成154(68+86),再变成605(154+451),最后变成1111(605+506),而1111是回文数.于是有数学家提出一个猜想:不论开始是什么正整数,在经过有限次正序数和倒序数相加的步骤后,都会得到一个回文数.至今为止还不知道…
Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online). Euler Tour Tree 维护将树中的边u--v变成u->v,v->u后的Euler Tour. 换根: 因为Euler Tour是一个环,那么我们可以在任意一个k->u的地方切断,然后把这段东西接到最后去,这样就把u变成根了 Link: 先换根,然后添加u->v与v->…
JavaScript:词法分析.连续赋值猜想 原创文章,转摘请注明出处:苏福:http://www.cnblogs.com/susufufu/p/5851642.html 深夜发文,先吐槽下博客园的编辑器,真不方便!我都是本地编辑好了在粘过来的,要是不用MarkDown写的话,那每次都得改改改啊! 先说下这个老话题:连续赋值 例1: function a(){ var o1 = o2 = 5; } a(); console.log(o1); console.log(o2); 结果是什么?cons…
卡拉兹(Callatz)猜想: 对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半.这样一直反复砍下去,最后一定在某一步得到n=1.卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展-- 我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下…
卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数.例如对n=3进行验证的时候,我们需要计算3.5.8.4.2.1,则当我们对n=5.8.4.2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这4个数已经在验证3的时候遇到过了,我们称5.8.4.2是被3"覆盖"的数.我们称一个数列中的某个数n为"关键数",如果n不能被数列中的…