1.EM算法要解决的问题 如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计. EM算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含数据(EM算法的E步),接着基于观察数据和猜测的隐含数据一起来极大化对数似然,求解我们的模型参数(EM算法的M步).由于我们之前的隐藏数据是猜测的,所以此时得到的模型参数一般还不是我们想要的结果.不过没关系,我们基于当前得到的模型参数,继续猜测隐含数据(EM算法的E步),然后继续极大化对数似然…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
不多说,直接上干货! 机器学习十大算法之一:EM算法(即期望最大化算法).能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完…
讲授高斯混合模型的基本概念,训练算法面临的问题,EM算法的核心思想,算法的实现,实际应用. 大纲: 高斯混合模型简介实际例子训练算法面临的困难EM算法应用-视频背景建模总结 高斯混合模型简写GMM,期望最大化算法EM.概率分布要确定里边的参数有两种手段,即据估计.最大似然估计. 高斯混合模型简介: 高斯分布也叫正态分布,在机器学习的一些书和论文里边,一般把它称为高斯分布,尤其是老外习惯这样写. 高斯混合模型是多个高斯分布的一个叠加,它的概率密度函数可以写成: 其中x肯定是一个连续性的随机变量,一…
简单介绍 求最小生成树一共同拥有两种算法,一个是就是本文所说的Kruskal算法,还有一个就是Prime算法. 在具体解说Kruskal最小生成树算法之前,让我们先回想一下什么是最小生成树. 我们有一个带权值的图,我们要求找到一个全部生成树中具有最小权值的生成树.例如以下图所看到的,T是图G的生成树.但不是具有最小权值的生成树. 我们能够把他们想象成一组岛屿和连接它们的可能的桥梁.当然修桥是非常昂贵和费时的,所以我们必需要知道建设什么样的桥梁去连接各个岛.只是有一个重要的问题.建设这样一组连接全…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型GMM,基于概率统计的pLSA模型. EM算法概述(原文) 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第14篇文章,我们来聊聊大名鼎鼎的EM算法. EM算法的英文全称是Expectation-maximization algorithm,即最大期望算法,或者是期望最大化算法.EM算法号称是十大机器学习算法之一,听这个名头就知道它非同凡响.我看过许多博客和资料,但是少有资料能够将这个算法的来龙去脉以及推导的细节全部都讲清楚,所以我今天博览各家所长,试着尽可能地将它讲得清楚明白. 从本质上来说EM算法是最大似然估计方法的…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.EM算法简介 在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,希望你在看了前一篇文章后,能大概知道E步和M步的目的和作用.为了加深一下理解,我们回过头来,重新看下EM算法的简单介绍: 输入:观测变量数据Y,隐变量数据Z,联合分布$P…
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的.什么是NB啊,我们一般说某个人非常NB,是由于他能解决一些别人解决不了的问题.神为什么是神,由于神能做非常多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是由于什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明确,可是,EM这个问题感觉真的不太好用通俗的…
EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 EM算法是期望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的情况下,概率模型参数的极大似然估计或极大后验估计.EM算法是一种迭代算法,每次迭代由两步组成:E步,求期望 (expectation),即利用当前估计的参数值来计算对数似然函数的期望值:M步,求极大 (maximization),即求参数\(\theta\) 来极大化E步中的期望值,而求出的参数\(\theta…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对EM算法的原理做一个总结. 1. EM算法要解决的问题 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参数.…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &amp;amp;amp;amp;a…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(3):EM算法运用 1. 内容 EM算法全称为 Expectation-Maximization 算法,其具体内容为:给定数据集$\mathbf{X}=\{\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_n\}$,假定这个数据集是不完整的,其还缺失了一些信息Y,一个完整的样本Z = {X,Y}.而且假定如果我们能得到完…
参考文献:http://blog.csdn.net/zouxy09/article/details/8537620 极大似然估计 已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知.最佳估计就是使得产生当前样本的概率最大下的参数值. 贝叶斯估计 已知样本满足某种概率分布,但参数未知.贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量.对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估…
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使用EM算法求解三硬币模型 为什么需要EM算法 数理统计的基本问题就是根据样本所提供的信息,对总体的分布或者分布的数字特征作出统计推断.所谓总体,就是一个具有确定分布的随机变量,来自总体的每一个iid样本都是一个与总体有相同分布的随机变量. 参数估计是指这样一类问题——总体所服从的分布类型已知,但某些…
最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.基本认识 EM(Expectation Maximization Algorithm)算法即期望最大化算法.这个名字起的很理科,就是把算法中两个步骤的名称放到名字里,一个E步计算期望,一个M步计算最大化,然后放到名字里就OK. EM算法是一种迭代算法,是1977年由Demspster等人总结提出,用于有隐含变量的概率模型参数的极大似然估计,或极大后验概率估计.这里可以注意下,EM算法是针对于有…
1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书中章节名称为Optimization) 2. 随机搜索 对于优化,一本很有名的书是Stephen Boyd 的凸优化(Convex Optimization).但看过的人可能思维会受到一点限制.最简单.最基本的求最大/最小值的算法,除了直接求解,就是把所有的可能值枚举出来,然后求最大/最小就可以了,…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率模型有时既含有观测变量(observable variable),又含有隐变量或潜在变量(latent variable),如果仅有观测变量,那么给定数据就能用极大似然估计或贝叶斯估计来估计model参数:但是当模型含有隐变量时,需要一种含有隐变量的概率模型参数估计的极大似然方法估计--EM算法 2…
极大似然算法 本来打算把别人讲的好的博文放在上面的,但是感觉那个适合看着玩,我看过之后感觉懂了,然后实际应用就不会了.... MLP其实就是用来求模型参数的,核心就是“模型已知,求取参数”,模型的意思就是数据符合什么函数,比如我们硬币的正反就是二项分布模型,再比如我们平时随机生成的一类数据符合高斯模型... 直接上公式: L(Θ) :联合概率分布函数,就是每个样本出现的概率乘积.  x1,x2,x3....xn  : 样本  Θ : 模型的参数(比如高斯模型的两个参数:μ.σ)  p(xi ;…
EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的<统计学习方法>书以及斯坦福机器学习课Andrew Ng的EM算法课后,对EM算法学习的介绍性笔记,如有写得不恰当或错误的地方,请指出,并多多包涵,谢谢.另外本人数学功底不是很好,有些数学公式我会说明的仔细点的,如果数学基础好,可直接略过. 2.基础数学知识   在正式介绍EM算法之前,先介绍推导EM算…
EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 上一篇阐述了EM算法的主要原理,这一篇来看其两大应用 -- K-means 与 高斯混合模型,主要由EM算法的观点出发. K-means K-means的目标是将样本集划分为K个簇,使得同一个簇内样本的距离尽可能小,不同簇之间的样本距离尽可能大,即最小化每个簇中样本与质心的距离.K-means属于原型聚类(prototype-based clustering),原型聚类指聚类结构能通过一组原型刻画,而原型即为样本…
I. 牛顿迭代法给定一个复杂的非线性函数f(x),希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足f′(x0)=0,然后可以转化为求方程f′(x)=0的根了.非线性方程的根我们有个牛顿法,所以 然而,这种做法脱离了几何意义,不能让我们窥探到更多的秘密.我们宁可使用如下的思路:在y=f(x)的x=xn这一点处,我们可以用一条近似的曲线来逼近原函数,如果近似的曲线容易求最小值,那么我们就可以用这个近似的曲线求得的最小值,来近似代替原来曲线的最小值: 显然,…
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量. 最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 极大似然估计用一句…
EM 算法的英文全称是: Expectation-Maximum. EM 算法的步骤 假设 \(Z\) 是隐变量,\(\theta\) 是待定参数. E 步:固定参数 \(\theta\),求 \(Z\) 的期望: M 步:求 \(\theta\) 的极大似然估计. 与 K-means 算法的比较 1.固定聚类中心,把每一个数据点分配到最近的中心(先确定隐含类别变量 \(c\),得到每个数据点的类别): 2.现在每个数据点都有了类别,我们发现,可以重新计算每个类别的中心,使得损失函数 \(J\)…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(4):EM算法证明 1. 概述 上一篇博客我们已经讲过了EM算法,EM算法由于其普适性收到广泛关注,高频率地被运用在各种优化问题中.但是EM算法为什么用简单两步就能保证使得问题最优化呢?下面我们就给出证明. 2. 证明 现在我们已经对EM算法有所了解,知道其以两步(E-step和M-step)为周期,迭代进行,直到收敛为止.那问题就是,在一个周期内,目…
Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上认识,我主要针对第(3 )点对Harris 角点检测算法提出了改进. 二.改进 Harris 算法原理 在介绍我的方法之前,我先提出如下概念:图像区域像素的相似度.我们知道, Harris 角点检测是基于图像像素灰度值变化梯度的, 灰度值图像的角点附近,是其像素灰度值变化非常大的区域,其梯度也非常大…