TensorFlow深层神经网络常用方法】的更多相关文章

深度学习所示深层神经网络的代名词,重要特性:多层.非线性. 若只通过线性变换,任意层的神经网络模型与单层神经网络模型的表达能力没有任何区别,这是线性模型的局限性.对于线性可分的问题中,线性模型可解决,但在现实生活中,绝大部分的问题都是无法线性分割的.  感知机:单层神经网络.不能处理异或问题. 1.激活函数 将每一个神经元(神经网络的节点)的输出通过一个非线性函数便可使得整个神经网络的模型非线性化,这个非线性函数就是激活函数.  常用非线性激活函数:tf.nn.relu.tf.sigmoid.t…
深层神经网络简称为深度学习有两个非常重要的特性1. 多层2. 非线性 线性模型的局限性 :例如前面的神经网络有两层(不算输入层),但是它和单层的神经网络井没有区别,任意线性模型的组合仍然还是线性模型,然而线性模型能够解决的问题是有限的 下面用TensorFlow Playground来演示 线性模型的局限性 还是以判断零件是否合格为例,输入为 X1 和巧,其中 X1 代表一个零件质量和平均质量 的差, X2代表一个零件长度和平均长度的差. 假设一个零件的质量及长度离平均质量及长度越近,那么这个零…
TensorFlow基础见前博客 上实例: MNIST 数据集介绍 MNIST 是一个手写阿拉伯数字的数据集. 其中包含有 60000 个已经标注了的训练集,还有 10000 个用于测试的测试集. 本次实验的任务就是通过手写数字的图片,识别出具体写的是 0-9 之中的哪个数字.   理论知识回顾 一个两层的深层神经网络结构如下: 上图所示的是一个具有两层隐藏层的深层神经网络 第一个隐藏层有 4 个节点,对应的激活函数为 ReLu 函数 第一个隐藏层有 2 个节点,对应的激活函数也是 Relu 函…
深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最大特点:任意线性模型的组合仍然是线性模型.(任意层的全连接神经网络和单层神经网络模型的表达能力没有任何区别) 激活函数实现去线性化:ReLU函数  sigmoid函数  tanh函数 (增加偏置项) ,TensorFlow支持7中不同的非线性激活函数 感知机:单层的神经网络,无法模拟异或运算.加入隐…
一.深度学习与深层神经网络 深层神经网络是实现“多层非线性变换”的一种方法. 深层神经网络有两个非常重要的特性:深层和非线性. 1.1线性模型的局限性 线性模型:y =wx+b 线性模型的最大特点就是任意线性模型的组合仍然还是线性模型. 如果只通过线性变换,任意层的全连接神经网络和单层神经网络模型的表达能力没有任何的区别,它们都是线性模型.然而线性模型能够解决的问题是有限的. 如果一个问题是线性不可分的,通过线性模型就无法很好的去分类这些问题. 1.2激活函数实现去线性化 神经元的输出为所有输入…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
一.深度学习与深层神经网络 1.线性模型局限性 线性模型无论多少层,表达能力是一致的.可以通过激活函数实现非线性. 2.多层网络可以解决异或运算 二.损失函数定义 1.经典损失函数: 分类问题: 二分类:取0.5作为阈值 多分类:设置n个输出节点,每个对应该类的可能性.神经网络输出向量 —>概率分布:softmax. 两个向量的距离:交叉熵 - sigma  p_x log(q_x),其中p代表y,q代表yHat softmax: 最后加一层 y‘ = normed(e^y) reduce_me…
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中…
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…